Advertisement

Marine Biology

, Volume 108, Issue 1, pp 5–9 | Cite as

Effects of salinity on spermatozoa motility, percentage of fertilized eggs and egg development of Baltic cod (Gadus morhua), and implications for cod stock fluctuations in the Baltic

  • L. Westin
  • A. Nissling
Article

Abstract

Variation in cod stock strength in the Baltic Sea is considered to be dependent on abiotic conditions such as salinity and water oxygen content in the spawning areas (the Baltic deep basins). Spawning cod were caught off northern Gotland, Sweden, from April to June in 1989 and 1990. Our investigation revealed a reduction in spermatozoan motility and a subsequent reduction in the percentage of fertilized eggs in salinities of 10 to 12‰. Normal egg development required a minimum salinity of 11‰. This coincides with the osmolality of the seminal plasma and egg yolk; i.e., the Baltic cod is adapted to hyperosmotic conditions for spawning and is thus totally dependent on periodical inflows of saline water from the North Sea.

Keywords

Saline Water Spermatozoan Motility Seminal Plasma Subsequent Reduction Abiotic Condition 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. Davenport, J., Lonning, S., Kjorsvik, E. (1981). Osmotic and structural changes during early development of eggs and larvae of the cod,Gadus morhua. J. Fish biol. 19: 317–331Google Scholar
  2. Fletcher, C. R. (1978). Osmotic and ionic regulation in the cod (Gadus morhua). J. comp. Physiol. 124: 149–155Google Scholar
  3. Grauman, G. B. (1973). Investigations of factors influencing fluctuations in abundance of Baltic cod. Rapp. P.-v. Réun. Cons. int. Explor. Mer 164: 73–76Google Scholar
  4. Hansson, S., Rudstam, L. G. (1990). Eutrophication and Baltic fish community. Ambio 19: 123–125Google Scholar
  5. Hohendorf, K. (1968). Zur Schwebfähigkeit pelagischer Fischeier in der Ostsee. Ber. dt. wiss. Kommn Meeresforsch. 19: 181–193Google Scholar
  6. Kändler, R. (1944). Untersuchungen über den Ostseedorsch während der Forschungsfahrten mit dem R.F.D. „Poseidon“ in den Jahren 1925–1938. Ber. dt. wiss. Kommn Meeresforsch. (Neue Folge) 11 (2): 137–245Google Scholar
  7. Lebedek, W. (1978). Occurrence and distribution of sprat and cod eggs and larvae in the sourthern Baltic in 1977. Int. Counc. Explor. Sea Comm. Meet. (Baltic fish Comm.) J: 15: 1–4Google Scholar
  8. Mangor-Jensen, A. (1987). Water balance in developing eggs of the cod Gadus morhua. In: Fish physiology and biochemistry, Vol. 3. Kugler Publications, Amsterdam/Berkeley, p. 17–24Google Scholar
  9. Modin, J. (1987). A note on large catches of cod,Gadus morhua, in the Bothnian sea during spring 1987. Int. Counc. Explor. Sea Comm. Meet. (Baltic Fish Comm.) J: 26: 1–4Google Scholar
  10. Morisawa, M., Suzuki, K. (1980). Osmolality and potassium ion: their roles in initiation of sperm motility in teleosts. Science, N.Y. 210: 1145–1146Google Scholar
  11. Mork, J., Ryman, N., Ståhl, G., Utter, F., Sundnes, G. (1985). Genetic variations in cod (Gadus morhua): little divergence throughout its range. Can. J. Fish. aquat. Sciences 42: 1580–1587Google Scholar
  12. Otterlind, G. (1984a). On fluctuations of the Baltic cod stock. Int. Counc. Explor. Sea Comm. Meet. (Baltic Fish Comm.) J: 14: 1–10Google Scholar
  13. Otterlind, G. (1984b). Cod migration and transplantation experiments. Int. Counc. Explor. Sea Comm. Meet. (Baltic Fish Comm.) J: 13: 1–21Google Scholar
  14. Riis-Vestergaard, J. (1984). Water balance in cod eggs. In: Dahl, E., Danielssen, D. S., Molesness, E., Solemdal, P. (eds.) The propagation of cod,Gadus morhua. Part 1. Flodevigen rapportser, No. 1. Oluf Rasmussen, Skien, p. 87–103Google Scholar
  15. Riis-Vestergaard, J. (1987). Physiology of teleost embryos related to environmental challenges. Sarsia 72: 351–358Google Scholar
  16. Solemdal, P. (1970). The reproductive adaption of marine teleosts to water of low salinity. Int. Counc. Explor. Sea Comm. Meet. (Demersal Fish Comm.) F: 30: 1–2Google Scholar
  17. Stoss, J. (1983). Fish gamete preservation and spermatozoan physiology. In: Hoar, W. S., Randall, D. J., Donaldson, E. M. (eds.) Fish physiology, Vol. IXB. Academic Press, New York, p. 305–350Google Scholar
  18. Strodtmann, S. (1918). Weitere Untersuchungen über Ostseefische, III. Ber. wiss. Meeresunters. Abt. Helgoland (Neue Folge) 14: 31–95Google Scholar
  19. Westernhagen, H. v. (1970). Erbrutung der von Dorsch (Gadus morhua), Flunder (Pleuronectes flesus), und Scholle (Pleuronectes platessa) unter kombinierten Temperatur- und Salzgehaltsbedingungen. Helgoländer wiss. Meeresunters. 21: 21–102Google Scholar
  20. Wieland, K. (1987). Distribution and mortality of cod eggs in the Bornholm Basin (Baltic Sea). Int. Counc. Explor. Sea Comm. Meet. (Baltic Fish Comm.) G: 56: 1–14Google Scholar

Copyright information

© Springer-Verlag 1991

Authors and Affiliations

  • L. Westin
    • 1
  • A. Nissling
    • 1
  1. 1.Department of Systems Ecology, Section GotlandStockholm UniversityStockholmSweden

Personalised recommendations