Skip to main content
Log in

Copper uptake by the sea anemoneAnemonia viridis and the role of zooxanthellae in metal regulation

  • Published:
Marine Biology Aims and scope Submit manuscript

Abstract

Anemonia viridis (Forskäl) were collected from south-west Scotland and south-west England in October 1988. When exposed to 0.05 and 0.2mg 1−1 copper in sea water, anemones did not take up the metal in proportion to external concentrations. Results suggested thatA. viridis regulated copper by expelling symbiotic algae (or zooxanthellae) which were shown to accumulate copper. The use of aposymbiotic (non-zooxanthellate) anemones in similar metal-uptake experiments indicated that other mechanisms may also be involved in metal regulation. Mucus was produced byA. viridis when the anemone was exposed to copper, and it is proposed that mucus may be involved in the regulation process. The implication of this work on the use of coelenterates as biological indicators of environmental metal levels is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature cited

  • Benson, A. A., Summons, R. E: (1981). Arsenic accumulation in Great Barrier Reef invertebrates. Science, N.Y. 211: 482–483

    Google Scholar 

  • Brown, B. E. (1977). Uptake of copper and lead by a metal tolerant isopodAsellus meridianus Rac. Freshwat. Biol. 7: 235–244

    Google Scholar 

  • Brown, B. E. (1982). The form and function of metal containing ‘granules’ in invertebrate tissues. Biol. Rev. 57: 621–627

    Google Scholar 

  • Brown, B. E., Holley, M. C. (1982). Metal levels associated with tin dredging and smelting and their effect upon intertidal reef flats at Ko Phuket, Thailand. Coral Reefs 1: 131–137

    Google Scholar 

  • Brown, B. E., Howard, S. (1985). Responses of coelenterates to trace metals: a field and laboratory evaluation. Proc. 5th int. coral Reef Congr. 6: 465–470 [Gabrié, C. et al. (eds.) Antenne Museum-EPHE, Moorea, French Polynesia]

    Google Scholar 

  • Bryan, G. W. (1971). The effect of heavy metals (other than mercury) on marine and estuarine organisms. Proc. R. Soc. (Ser. B) 177: 389–410

    Google Scholar 

  • Bryan, G. W. (1974). Some aspects of heavy metal tolerance in aquatic organisms. In: Lockwood, A. P. M. (ed.) Effects of pollutants on aquatic organisms. Cambridge, England, University Press, p. 7–34

    Google Scholar 

  • Bryan, G. W., Gibbs, P. E. (1983). Heavy metals in the Fal estuary, Cornwall: a study of long term contamination by mining waste and its effects on estuarine organisms. Occ. Publs mar. biol. Ass. U.K. 2: 1–112

    Google Scholar 

  • Buddemeier, R. W., Schneider, R. C., Smith, S. V. (1981). The alkaline earth chemistry of corals. Proc. 4th int. Symp. coral Reefs 2: 81–85. [Gomez, E. D. et al. (eds.) Marine Sciences Center, University of the Philippines, Quezon City]

    Google Scholar 

  • Coughtrey, P. J., Martin, M. H. (1976). The distribution of Pb, Zn, Cd and Cu within the pulmonate molluscHelix aspersa Müller. Oecologia (Berl.) 23: 323–334

    Google Scholar 

  • Davies, M. (1988). Nitrogen flux in the symbiotic sea anemoneAnemonia viridis (Forskäl). Ph. D. thesis. University of Glasgow

  • Dykens, J. A. (1984). Enzymatic defenses against oxygen toxicity in marine cnidarians containing endosymbiotic algae. Mar. Biol. Lett. 5: 291–301

    Google Scholar 

  • Esquivel, I. (1986). Short term copper bioassay on the planula of the reef coralPocillopora damicornis. Tech. Rep. Hawaii Inst. mar. Biol., Univ. Hawaii, Honolulu 37: 465–472

    Google Scholar 

  • Evans III, E. C. (1977). Microcosm responses to environmental perturbants. An extension of baseline field survey. Helgoländer wiss. Meersunters. 30: 178–191

    Google Scholar 

  • Glynn, P. W. (1984). Widespread coral mortality and the 1982–1983 El Niño warming event. Envir. Conserv. 10: 149–154

    Google Scholar 

  • Goreau, T. F. (1964). Mass expulsion of zooxanthellae from Jamaican reef communities after Hurricane Flora. Science, N.Y. 145: 383–386

    Google Scholar 

  • Gupta, B. L., Hall, T. A. (1984). Role of high concentrations of Ca, Cu and Zn in the maturation and discharge in situ of sea anemone nematocysts as shown by X-ray microanalysis of cryosections. In: Bolis, L. et al. (eds.) Toxins, drugs and pollutants in marine animals. Springer-Verlag, Berlin, Heidelberg, p. 77–95

    Google Scholar 

  • Harland, A. D., Brown, B. E. (1989). Metal tolerance in the scleractinian coralPorites lutea. Mar. Pollut. Bull. 20: 353–357

    Google Scholar 

  • Harriott, V. J. (1985). Mortality rates of sleractinian corals before and during a mass bleaching event. Mar. Ecol. Prog. Ser. 21: 81–88

    Google Scholar 

  • Howard, L. S., Crosby, D. G., Alino, P. (1986). Evaluation of some of the methods for quantitatively assessing the toxicity of heavy metals to corals. Tech. Rep. Hawaii Inst. mar. Biol., Univ. Hawaii, Honolulu 37: 452–464

    Google Scholar 

  • Howell, R. (1982). The secretion of mucus by marine nematodes (Enoplus spp.). A possible mechanism influencing the uptake and loss of heavy metal pollutants. Nematologica 28: 110–114

    Google Scholar 

  • McAuley, P. J. (1986). Isolation of viable uncontaminatedChlorella from green hydra. Limnol. Oceanogr. 31: 222–224

    Google Scholar 

  • Meikle, P., Richards, G. N., Yellowlees, D. (1988). Structural investigations on the mucus from six species of coral. Mar. Biol. 99: 187–193

    Google Scholar 

  • Moore, M. N. (1985). Cellular responses to pollutants. Mar. Pollut. Bull. 16: 134–139

    Google Scholar 

  • Schoenberg, D. A., Trench, R. K. (1980). Genetic variation inSymbiodinium (=Gymnodinium)microadriaticum Freudenthal, and specificity in its symbiosis with marine invertebrates. III. Specificity and infectivity ofSymbiodinium microadriaticum. Proc. R. Soc. (Ser. B) 207: 445–460

    Google Scholar 

  • Sokal, R. R., Rohlf, F. J. (1981). Biometry. The principles and practice of statistics in biological research. 2nd ed. W. H. Freeman & Co., San Francisco

    Google Scholar 

  • Stebbing, A. R. D., Brown, B. E. (1984). Marine ecotoxicological tests with coelenterates. In: Persoone, G. et al. (eds.) Ecotoxicological testing for the environment. Vol. 1. State University Ghent and Institute of Marine Scientific Research, Bredene, Belgium, p. 307–339

    Google Scholar 

  • St. John, B. E. (1972). Trace elements in corals of the Coral Sea: their relationship to oceanographic factors. In: Fraser, R. (ed.) Oceanography of the South Pacific. New Zealand Commission for UNESCO, Wellington, p. 149–158

    Google Scholar 

  • Tytler, E. M., Spencer Davies, P. (1983). A method of isolating clean and viable zooxanthellae by density gradient centrifugation. Limnol. Oceanogr. 23: 1266–1268

    Google Scholar 

  • Van-Praet, M. (1977). Les cellules a concretions d'Actinia equina L. C. r. hebd. Séanc. Acad. Sci., Paris 285: 175–179

    Google Scholar 

  • Veeh, H. H., Turekian, K. K. (1968). Cobalt, silver and uranium concentrations of reef building corals in the Pacific Ocean. Limnol. Oceanogr. 13: 304–308

    Google Scholar 

  • Zar, J. H. (1974). Biostatistical analysis. Prentice Hall, New Jersey

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by J. Mauchline, Oban

Rights and permissions

Reprints and permissions

About this article

Cite this article

Harland, A.D., Nganro, N.R. Copper uptake by the sea anemoneAnemonia viridis and the role of zooxanthellae in metal regulation. Mar. Biol. 104, 297–301 (1990). https://doi.org/10.1007/BF01313271

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01313271

Keywords

Navigation