Skip to main content
Log in

Examples of post-mortality alteration in Recent brachiopod shells and (paleo)ecological consequences

  • Published:
Marine Biology Aims and scope Submit manuscript

Abstract

Post-mortality alteration of brachiopod shells under normal environmental conditions leads to high taphonomic loss, and to a poor contribution to the biodetrital soft sediment. The successive stages of alteration which shells undergo are: (bio)degradation of the organic matrix → shell softening → structural disaggregation or/and mechanical fragmentation; these processes depend on the shell structure (number of layers) and composition (organic and inorganic components), but very little on environmental conditions, except for the dissolution of inorganic shell constituents. Among the Brachiopoda, three types of alteration occur to different types of shells — Type I: two-layered chitino-phosphatic shell (species ofLingula andGlottidia) displays a rapid degradation of the organic matrix and mechanical abrasion, leading to total disappearance of the shell in 2 to 3 wk; Type II: two-layered carbonate shell, e.g.Terebratulina spp. [but notNotosaria nigricans (Sowerby) which may constitute a fourth shell type], exhibits degradation of the organic matrix of the secondary layer, shell softening, and structural disaggregation leading to shell disintegration in 6 to 7 mo with a concomitant contribution of calcitic microfibres to the sediment; Type III: three-layered carbonate shell, e.g.Gryphus vitreus (Born), undergoes organic degradation of the secondary layer, fragmentation of the anterior two-thirds of the shell, and slow degradation (because of the thick tertiary layer) of the posterior portion of the shell, with dissolution of the inorganic components (mainly in the tertiary layer) which make a relatively minor contribution to the sediment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature cited

  • Alexandersson, E. T. (1979). Marine maceration of the skeletal carbonates in the Skagerrak, North Sea. Sedimentology 26: 845–852

    Google Scholar 

  • Benigni, C. (1985). Morphologia ed ultrastruttura diGryphus vitreus (Born, 1778) dell'Arcipelago Toscano (Italia). Boll. Mus. reg. Sci. nat. Torino 3: 449–498

    Google Scholar 

  • Benigni, C. (1987). Shell microstructure of Mediterranean terebratulid from Pliocene to recent and its diagnostic significance. Boll. Mus. reg. Sci. nat. Torino 5: 1–26

    Google Scholar 

  • Boullier, A., Delance, J. H., Emig, C. C., d'Hondt, J. L., Gaspard, D., Laurin, B. (1986). Les populations deGryphus vitreus (Brachiopoda) en Corse. Implications paléontologiques. Biostratigr. Paléozoïque, Brest 4: 179–196

    Google Scholar 

  • Caulet, J. P. (1972). Les sédiments organogènes du précontinent algérien. Mém. Mus. natn. Hist. nat., Paris 25 (sér. C): 1–295

    Google Scholar 

  • Collins, M: J. (1986). Post mortality strength loss in shells of the Recent articulate brachiopodTerebratulina retusa (L.) from the west coast of Scotland. Biostratigr. Paléozoïque, Brest 4: 209–218

    Google Scholar 

  • Curry, G. B. (1982). Ecology and population structure of the Recent brachiopodTerebratulina from Scotland. Palaeontology 25: 227–246

    Google Scholar 

  • Emig, C. C. (1981). Observations sur l'écologie deLingula reevei Davidson (Brachiopoda: Inarticulata). J. exp. mar. Biol. Ecol. 52: 47–61

    Google Scholar 

  • Emig, C. C. (1983). Comportement expérimental deLingula anatina (Brachiopoda: Inarticulata) dans divers substrats meubles (Baie de Mutsu, Japon). Mar. Biol. 75: 207–213

    Google Scholar 

  • Emig, C. C. (1986). Conditions de fossilisation du genreLingula (Brachiopoda) et implications paléontologiques. Palaeogeogr. Palaeoclim. Palaeoecol. 53: 245–253

    Google Scholar 

  • Emig, C. C. (1987). Offshore brachiopods investigated by submersible. J. exp. mar. Biol. Ecol. 108: 261–273

    Google Scholar 

  • Emig, C. C. (1989a). Distribution bathymétrique et spatiale des populations deGryphus vitreus (brachiopode) sur la marge continentale (Nord-Ouest Méditerranée). Oceanol. Acta 12: 205–209

    Google Scholar 

  • Emig, C. C. (1989b). Distributional patterns along the Mediterranean continental margin (upper bathyal) usingGryphus vitreus (Brachiopoda) densities. Palaeogeogr. Palaeoclim. Palaeoecol. 71: 253–256

    Google Scholar 

  • Emig, C. C. (1989c) Observations préliminaires sur l'envasement de la biocoenose àGryphus vitreus (Brachiopoda), sur la pente continentale du Nord de la Corse (Méditerranée). Origines et conséquences. C. r. hebd. Séanc. Acad. Sci., Paris (sér. III) 309: 337–342

    Google Scholar 

  • Emig, C. C. (1989d). Les brachiopodes actuels sont-ils des indicateurs (paléo) bathymétriques? Géol. méditerr., Marseille 15: 65–71

    Google Scholar 

  • Foster, M. W. (1974). Recent Antarctic and Subantarctic brachiopods. Antarct. Res. Ser. 21: 1–189

    Google Scholar 

  • Fredj-Reygrobellet, D., Fredj, G. (1982). Etat des recherches sur les populations méditerranéennes deGryphus vitreus (Born) de la limite inférieure du plateau continental. Bull. Soc. zool. Fr. 107: 217–223

    Google Scholar 

  • Gaspard, D. (1986). Aspects figurés de la biominéralisation unités de base de la sécrétion carbonatée chez les Terebratulida actuels. Biostratigr. Paléozoïque, Brest 4: 77–83

    Google Scholar 

  • Gaspard, D. (1988). Aperçu de la biodégradation des tests de brachiopodes actuels. Conséquences lors de la fossilisation. Association des Sédimentologistes Français, Marseille Colloque n° 7: Biosédimentologie

  • Iwata, K. (1981). Ultrastructure and mineralization of the shell ofLingula unguis Linné (inarticulate, brachiopod). J. Fac. Sci., Hokkaido Univ. (Ser. 4) 20: 35–65

    Google Scholar 

  • Iwata, K. (1982). Ultrastructure and calcification of the shells in inarticulate brachiopods. Part 2. Ultrastructure of the shells ofGlottidia andDiscinisca [in Jap.]. J. geol. Soc. Japan 88: 957–966

    Google Scholar 

  • Jope, H. M. (1965). Composition of brachiopod shells. In: Moore R. C. (ed.) Treatise on invertebrate paleontology. Part H. Brachiopoda. University Kansas Press & Geological Society of America, New York, p. 156–164

    Google Scholar 

  • Jope, H. M. (1971). Constituents of brachiopod shells. Comp. Biochem. 26C: 749–783

    Google Scholar 

  • Logan, A., Noble, J. P. A. (1971). A recent shallow-water brachiopod community from the bay of Fundy. Marit. Sediments 7: 85–91

    Google Scholar 

  • Mackinnon, D. I., Williams, A. (1974). Shell structure of terebratulid brachiopods. Palaeontology 17: 179–202

    Google Scholar 

  • Mundlos, R. (1978). Terebratulid shell beds. Neues Jb. Geol. Paläont. Abh. 157: 45–47

    Google Scholar 

  • Noble, J. P. A., Logan, A., Webb, G. R. (1976). The RecentTerebratulina community in the rocky subtidal zone of the bay of Fundy, Canada. Lethaia 9: 1–17

    Google Scholar 

  • Poulicek, M. (1983). Patterns of mollusk shell biodegradation in bathyal and abyssal sediments. J. mollusc Stud. (Suppl.) 12A: 136–141

    Google Scholar 

  • Stewart, I. R. (1981). Population structure of articulate brachiopod species from soft and hard substrates. N.Z. Jl Zool. 8: 197–207

    Google Scholar 

  • Thomson, J. A. (1927). Brachiopod morphology and genera (Recent and Tertiary). N.Z. Bd Sci. Art Man. 7: 1–338

    Google Scholar 

  • Wanatabe, N., Pan, C.-H. (1984). Phosphatic shell formation in atremate brachiopods. Am. Zool. 24: 977–985

    Google Scholar 

  • Williams, A. (1968). Evolution of the shell structure of articulate brachiopods. Spec. Pap. Palaeont. 2: 1–55

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by J. M. Pérès, Marseille

Rights and permissions

Reprints and permissions

About this article

Cite this article

Emig, C.C. Examples of post-mortality alteration in Recent brachiopod shells and (paleo)ecological consequences. Mar. Biol. 104, 233–238 (1990). https://doi.org/10.1007/BF01313263

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01313263

Keywords

Navigation