Skip to main content
Log in

Life-history analysis in “physiological” compared with “sidereal” time: An example with an amphipod (Gammarus lawrencianus) in a varying environment

  • Published:
Marine Biology Aims and scope Submit manuscript

Abstract

The multivoltine, estuarine amphipodGammarus lawrencianus has four generations per year in an environment where temperatures range seasonally from −1° to 25°C. Temperature-response curves for rates of brood production and development were determined by laboratory experiments and field observation. The life history and population dynamics were observed over a full annual cycle (1981) for a field population located at Rocky Run, Porter's Lake, Nova Scotia, Canada. On a natural (i.e., sidereal) time scale, the generations appear to have very different life histories: the two summer generations have short lives, rapid development and mature at small size (classicr-selection), whereas the overwintering generations have relatively low rates of mortality, slow development and mature at large size (classicK-selection). This pattern (larger size at maturity at lower temperatures) is widespread in aquatic poikilotherms. Similar life-history differences are evident among cohorts of the summer generations that mature at different temperatures. When time is expressed on a physiological scale that removes the effect of temperature on embryonic development and reproductive rate, the variation within and among generations is greatly reduced. In particular, an apparent alternation betweenr- andK-selection largely disappears. Because the generations are temporally isolated, it might be surmised that natural selection acting on the summer generations might antagonize the effects of natural selection acting on the fall and winter generations. However, the scaling of the rates of development, maturation, growth, reproduction and mortality on the physiological time scale derived from the temperature dependence of development and reproductive rate gives a very different and more homogeneous pattern.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Literature cited

  • Baker, R. J., Nelder, J. A. (1978). The GLIM system manual, Release 3. Oxford, University Press (Numerical Algorithms Group)

    Google Scholar 

  • Berven, K. A., Gill, D. E. (1983). Countergradient selection in the green frog,Rana clamitans. Evolution, Lawrence, Kansas 33: 85–97

    Google Scholar 

  • Birkhead, T. R., Clarkson, K. (1980). Mate selection and precopulatory guarding inGammarus pulex. Z. Tierpsychol. 52: 365–380

    Google Scholar 

  • Brooks, J. L., Dodson, S. I. (1965). Predation, body size, and the composition of the plankton. Science, N.Y. 150: 28–35

    Google Scholar 

  • Caine, E. A. (1979). Population structures of two species of caprellid amphipods (Crustacea). J. exp. mar. Biol. Ecol. 40: 115–135

    Google Scholar 

  • Cooley, J. M. (1975). The effect of temperature on the development of the egg, first and second naupliar stages and vertical migration inDiaptomus oregonensis Lillj. (Copepod: Calanoidea). Master's thesis. University of Toronto

  • Doyle, R. W., Hunte, W. (1981). Genetic changes in the components of fitness of a crustacean population in a controlled environment. J. exp. mar. Biol. Ecol. 52: 147–156

    Google Scholar 

  • Doyle, R. W., Myers, R. A. (1982). The measurement of the direct and indirect intensities of natural selection. In: Dingle, H., Hegmann, J. P. (eds.) Evolution and genetics of life histories. Springer-Verlag, New York, p. 177–186

    Google Scholar 

  • Hartnoll, R. G. (1984). Growth. In: Abele, L. G. (ed.) The biology of the Crustacea. Vol. 2. Academic Press, New York, p. 111–195

    Google Scholar 

  • Hartnoll, R. G., Smith, S. M. (1978). Pair formation and the reproductive cycle inGammarus duebeni. J. nat. Hist. 12: 501–511

    Google Scholar 

  • Kahn, M. F. (1965). The effect of constant and varying temperatures on the development ofAcantocyclops viridis (Jurine). Proc. R. Ir. Acad. 64: 117–130

    Google Scholar 

  • Keen, R., Parker, D. L. (1977). Determining expected duration under conditions of alternating temperatures. J. theor. Biol. 81: 599–607

    Google Scholar 

  • Laudien, H. (1973). Effect of temperature on the processes of growth and development. In: Precht, H., Christopherson, J., Hensel, H., Larcher, W. (eds.) Temperature and life. Springer Verlag, New York, p. 355–399

    Google Scholar 

  • Logan, J. A., Wolkind, D. J., Hoyt, S. C., Tanigoshi, D. J. (1976). An analytical model for the description of temperature dependent rate phenomena in arthropods. Envir. Ent. 5: 1133–1140

    Google Scholar 

  • McLaren, I. A., Corkett, C. J., Sillioux, E. J. (1966). Temperature adaptations of copepod eggs from the arctic to the tropics. Biol. Bull. mar. biol. Lab., Woods Hole 137: 486–493

    Google Scholar 

  • Myers, R. A., Runge, J. (1983). Predictions of seasonal natural mortality rates in a copepod population using life history theory. Mar. Ecol. Prog. Ser. 11: 189–194

    Google Scholar 

  • Nelson, W. G. (1979). Experimental studies of selective predation on amphipods: consequences for amphipod distribution and abundance. J. exp. mar. Biol. Ecol. 38: 225–245

    Google Scholar 

  • Nelson, W. G. (1980). Reproduction patterns of gammaridean amphipods. Sarsia 65: 61–71

    Google Scholar 

  • Nilsson, L. M. (1977). Incubation time, growth and mortality of the amphipodGammarus pulex under laboratory conditions. Oikos 29: 93–98

    Google Scholar 

  • Pielou, E. C. (1977). Mathematical ecology. John Wiley & Sons, New York

    Google Scholar 

  • Ricker, W. E. (1969). Effects of size selective mortality and sampling bias on estimates of growth, mortality, production and yield. J. Fish. Res. Bd Can. 26: 479–541

    Google Scholar 

  • Ricker, W. E. (1975). Computation and interpretation of biological statistics of fish populations. Bull. Fish. Res. Bd Can. 191: 1–382

    Google Scholar 

  • Robertson, A. I., Howard, R. K. (1978). Diel trophic interactions between vertically-migrating zooplankton and their fish predators in an eelgrass community. Mar. Biol. 48: 207–213

    Google Scholar 

  • Smith-Gill, S. J. (1983). Developmental plasticity: developmental conversion versus phenotypic modulation. Am. Zool. 23: 47–58

    Google Scholar 

  • Steele, D. H., Steele, V. J. (1969). The biology ofGammarus (Crustacea, Amphipoda) in the northwestern Atlantic, I.Gammarus duebeni Lillj. Can. J. Zool. 47: 235–244

    Google Scholar 

  • Steele, D. H., Steele, V. J. (1970). The biology ofGammarus (Crustacea, Amphipoda) in the northwestern Atlantic. IV.Gammarus lawrencianus Bousfield. Can. J. Zool. 48: 1261–1267

    Google Scholar 

  • Steele, D. H., Steele, V. J. (1975). The biology ofGammarus (Crustacea, Amphipoda) in the northwestern Atlantic. XI. Comparison and discussion. Can. J. Zool. 53: 1116–1126

    Google Scholar 

  • Steele, D. H., Steele, V. J. (1986). The cost of reproduction in the amphipodGammarus lawrencianus. Crustaceana 51: 176–182

    Google Scholar 

  • Steele, V. J. (1981). The effect of photoperiod on the reproductive cycle ofGammarus lawrencianus Bousfield. J. exp. mar. Biol. Ecol. 53: 1–7

    Google Scholar 

  • Stinner, R. E., Gutierrez, A. P., Butler, G. D. (1974). An algorithm for temperature dependent growth rate simulation. Can. Ent. 106: 519–524

    Google Scholar 

  • Sutcliffe, D. W., Carrick, T. R. (1981). Effect of temperature on the duration of egg development, molting and growth in juveniles ofCrangonyx pseudogracilis (Crustacea: Amphipoda) in the laboratory. Freshwat. Biol. 11: 511–522

    Google Scholar 

  • Sutcliffe, D. W., Carrick, T. R., Willoughby, L. G. (1981). Effect of diet, body size, age and temperature on growth rates in the amphipodGammarus pulex. Freshwat. Biol. 11: 183–214

    Google Scholar 

  • Taylor, B. J. R. (1965). The analysis of polymodal frequency distributions. J. Anim. Ecol. 34: 445–452

    Google Scholar 

  • Taylor, F. (1979). Convergence to the stable age distribution in populations of insects. Am. Nat. 113: 511–530

    Google Scholar 

  • Taylor, F. (1981). Ecology and evolution of physiological time in insects. Am. Nat. 117: 1–23

    Google Scholar 

  • Threlkeld, S. (1979). Estimating cladoceran birth rates: the importance of egg mortality and the egg age distribution. Limnol. Oceanogr. 24: 601–612

    Google Scholar 

  • Vannote, R. L. (1978). A geometric model describing quasi-equilibrium of energy flow in a population of stream insects. Proc. nat. Acad. Sci. U.S.A. 75: 381–384

    Google Scholar 

  • Vince, S., Valiela, I., Backus, N., Teal, J. M. (1976). Predation by the salt marsh killifishFundulus heteroclitus (L.) in relation to prey size and habitat structure: consequences for prey distribution and abundance. J. exp. mar. Biol. Ecol. 23: 255–266

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by M. G. Hadfield, Honolulu

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sinervo, B., Doyle, R.W. Life-history analysis in “physiological” compared with “sidereal” time: An example with an amphipod (Gammarus lawrencianus) in a varying environment. Mar. Biol. 107, 129–139 (1990). https://doi.org/10.1007/BF01313250

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01313250

Keywords

Navigation