Skip to main content
Log in

Influence of environmental salinity on oxygen consumption and ammonia excretion of the arctic under-ice amphipodOnisimus glacialis

  • Published:
Marine Biology Aims and scope Submit manuscript

Abstract

Changes in salinity affect the metabolic rate of the sympagic amphipodOnisimus glacialis collected from the Barents Sea in 1986 and 1988. When transferred from 35 to 5 ppt S, oxygen consumption and ammonia excretion both increase three-fold during the first 5 h of exposure, and they remain high throughout the rest of the experimental period (26 h). During 24-h acclimation to various salinities (5 to 45 ppt), the amphipods exhibit a respiratory and excretory response to hyper- and hypoosmotic stress; however, a rather constant O:N atomic ratio (around 15) was obtained at the experimental salinities, indicating protein/lipids as metabolic substrate. Both rates of oxygen consumption and ammonia excretion increased with an increasing osmotic difference (0 to 650 mOsm) between the haemolymph and the environmental medium, indicating higher energy requirements for osmotic and ionic regulation at low salinities. In amphipods abruptly transferred from 35 to 5 ppt, a minor decrease of the haemolymph sodium concentrations together with an increased ammonia excretion output indicate a counter-ion regulation of NH +4 and Na+ during hyposmotic stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature cited

  • Aarset, A. V., Aunaas, T. (1987). Osmotic responses to hyposmotic stress in the amphipodsGammarus wilkitzkii, Onisimus glacialis andParathemisto libellula from Arctic waters. Polar Biol. 7: 189–193

    Google Scholar 

  • Aarset, A. V., Willumsen, F. (1985). Hydraulic based sampling equipment for under-ice fauna. Polar Res. 3: 253–255

    Google Scholar 

  • Biggs, D. C. (1982). Zooplankton excretion and NH4 cycling in the near-surface waters of the Southern ocean. I. Ross Sea, austral summer 1977–1978. Polar Biol. 1: 55–67

    Google Scholar 

  • Bulnheim, H. P. (1972). Vergleichende Untersuchungen zur Atmungsphysiologie euryhaliner Gammariden unter besonderer Berücksichtigung der Salzgehaltsanpassung. Heloglander wiss. Meeresunters. 23: 485–534

    Google Scholar 

  • Carey, A. G. Jr. (1985). Marine ice fauna: Arctic. In: Horner RA (ed.) Sea ice biota. CRC Press, Florida, p. 173–190

    Google Scholar 

  • Conover, R. J., Corner, E. D. S. (1968). Respiration and nitrogen excretion by some marine zooplankton in relation to their life cycles. J. mar. biol. Ass. U.K. 48: 49–75

    Google Scholar 

  • Cox, G. F. N., Weeks, W. F. (1974). Salinity variations in sea ice. J. Glaciol. 67: 109–120

    Google Scholar 

  • Dalla Via, G. J. (1987). Effects of salinity and temperature on oxygen consumption in a freshwater populations ofPalaemonetes antennarius (Crustacea, Decapoda). Comp. Biochem. Physiol. 88: 299–305

    Google Scholar 

  • Dimock, R. V. Jr, Groves, K. H. (1975). Interaction of temperature and salinity on oxygen consumption of the estuarine crabPanopeus herbstii. Mar. Biol. 33: 301–308

    Google Scholar 

  • Eltringham, S. K. (1965). The respiration ofLimnoria (Isopoda) in relation to salinity. J. mar. biol. Ass. U.K. 45: 145–152

    Google Scholar 

  • Engelmann, M. D. (1963). A constant pressure respirometer for small arthropods. Entomol. News 74: 181–187

    Google Scholar 

  • Evans, D. H., Cameron, J. N. (1986). Gill Ammonia Transport. J. exp. Zool. 239: 17–23

    Google Scholar 

  • Gilles, R. (1973). Oxygen consumption as related to the amino-acid metabolism during osmoregulation in the blue crabCallinectes sapidus. Neth. J. Sea Res. 7: 200–207

    Google Scholar 

  • Gilles, R., Pequeux, A. (1985). Ion transport in Crustacean gilles: physiological and ultrastructural approaches. In: Gilles, R., Gilles-Baillien, M. (eds.) Transport processes, iono- and osmoregulation, Springer, Berlin, p. 136–158

    Google Scholar 

  • Gross, W. J. (1957). An analysis of response to osmotic stress in selected decapod crustacea. Biol. Bull. mar. biol. Lab., Woods Hole 112: 43–62

    Google Scholar 

  • Gulliksen, B. (1984). Under-ice fauna from Svalbard waters. Sarsia 69: 17–23

    Google Scholar 

  • Haberfield, E. C., Haas, L. W., Hammen, C. S. (1975). Early ammonia release by a polychaeteNereis virens and a crabCarcinus maenas in diluted sea water. Comp. Biochem. Physiol. 52: 501–503

    Google Scholar 

  • Hagerman, L. (1970). The oxygen consumption ofCrangon vulgaris (Fabricius) (Crustacea, Natantia) in relation to salinity. Ophelia 7: 283–292

    Google Scholar 

  • Harris, R. R., Andrews, M. B. (1985). Total NPS pool and ammonia net efflux rate changes inCarcinus maenas during acclimation to low environmental salinity. Comp. Biochem. Physiol. 82: 301–308

    Google Scholar 

  • Ikeda, T. (1974). Nutritional ecology of marine zooplankton. Mem. Fac. Fish. Hokkaido Univ. 22: 1–97

    Google Scholar 

  • Ikeda, T., Bruce, B. (1986). Metabolic activity and elemental composition of krill and other zooplankton from Prydz Bay, Antarctica, during early summer (November–December). Mar. Biol. 92: 545–555

    Google Scholar 

  • King, E. N. (1965). The oxygen consumption of intact crabs and excised gills as a function of decreased salinity. Comp. Biochem. Physiol. 15: 93–102

    Google Scholar 

  • Kirschner, L. B. (1979). Control of the extracellular fluid osmolarity, control mechanisms in crustaceans and fishes. In: Gilles, R. (ed.) Mechanisms of osmoregulation in animals, Wiley, New York, p. 157–222

    Google Scholar 

  • Kutty, M. N., Murugapoopathy, G., Krishnan, T. S. (1971). Influence of salinity and temperature on the oxygen consumption in young juveniles of the Indian PrawnPenaeus indicus. Mar. Biol. 11: 125–131

    Google Scholar 

  • Lofts, B. (1965). The effects of salinity changes on the respiratory rates of the prawnPalaemonetes varians (Leach). J. exp. Biol. 33: 730–736

    Google Scholar 

  • Mangum, C. P., Silverthorn, S. U., Harris, J. L., Towle, D. W., Krall, A. R. (1976) The relationship between blood pH, ammonia excretion and adaptation to low salinity in the blue crabCallinectes sapidus. J. exp. Zool. 195: 129–136

    Google Scholar 

  • Maykut, G. A. (1985). The ice environment. In: Horner, R. A. (ed.). Sea ice biota, CRC Press, Florida, p. 21–83

    Google Scholar 

  • Mayzaud, P. (1973). Respiration and nitrogen excretion of zooplankton. II. Studies of metabolic characteristics of starved animals. Mar. Biol. 21: 19–28

    Google Scholar 

  • Mayzaud, P., Conover, R. J. (1988). O:N atomic ratio as a tool to describe zooplankton metabolism. Mar. Ecol. Prog. Ser. 45: 289–302

    Google Scholar 

  • McLusky, D. (1969). The oxygen consumption ofCorophium volutator in relation to salinity. Comp. Biochem. Physiol. 29: 743–753

    Google Scholar 

  • Nansen, F. (1906). Protozoa on the ice floes of the North Polar Sea. Scient. Results Norw. N. polar Exped. 5(16): 1–22

    Google Scholar 

  • Needham, A. E. (1957). Factors effecting nitrogen excretion inCarcinides maenas (Pennant). Physiol. comp. Oecol. 4: 209–239

    Google Scholar 

  • Potts, W. T. W. (1954). The energetics of osmotic regulation in brackish and fresh-water animals. J. exp. Biol. 31: 618–630

    Google Scholar 

  • Quarmby, L. M. (1985). The influence of temperature and salinity on the nitrogen excretion of the spot prawn,Pandalus platyceros Brandt. J. exp. mar. Biol. Ecol. 87: 229–239

    Google Scholar 

  • Rao, K. P. (1958). Oxygen consumption as a function of size and salinity inMetapenaeus monoceros Fab. from marine and brackish-water environments. J. exp. Biol. 35: 307–313

    Google Scholar 

  • Regnault, B. (1984). Salinity-induced changes in ammonia excretion rate of the shrimpCrangon crangon over a winter tidal cycle. Mar. Ecol. Prog. Ser. 20: 119–125

    Google Scholar 

  • Solorzano, L. (1969). Determination of ammonia in natural waters by the phenolhypochlorite method. Limnol. Oceanogr. 14: 799–801

    Google Scholar 

  • Spaargaaren, D. H., Richard, P., Ceccaldi, H. J. (1982). Excretion of nitrogenous products byPenaeus japonicus Bate in relation to environmental osmotic conditions. Comp. Biochem. Physiol. 72: 673–678

    Google Scholar 

  • Stern, S., Borut, A., Cohen, D. (1984). The effect of salinity and ion composition on oxygen consumption and nitrogen excretion ofMacrobrachium rosenbergii. Comp. Biochem. Physiol. 479: 271–274

    Google Scholar 

  • Styczynska-Jurewicz, E. (1970). Bioenergetics of osmoregulation in aquatic animals. Polskie Archwn. Hydrobiol. 17: 295–302

    Google Scholar 

  • Taylor, A. C. (1977). The respiratory responses ofCarcinus maenas (L.) to changes in environmental salinity. J. exp. mar. Biol. Ecol. 29: 197–210

    Google Scholar 

  • Taylor, A. C., Spicer, J. I., Preston, T. (1987). The relationship between osmoregulation and nitrogen metabolism in the intertidal prawn,Palemon elegans (Rathke). Comp. Biochem. Physiol. 88: 291–298

    Google Scholar 

  • Tedengren, M., Arner, M., Kautsky, N. (1988). Ecophysiology and stress response of marine and brackish water Gammarus species (Crustacea, Amphipoda) to changes in salinity and exposure to cadmium and diesel-oil. Mar. Ecol. Prog. Ser. 47: 107–116

    Google Scholar 

  • Untersteiner, N. (1968). Natural desalination and equilibrium salinity profile of old sea ice. J. geophys. Res. 73: 519–543

    Google Scholar 

  • Weeks, W. F. (1986). The physical properties of sea ice cover. In: Hurdle, B. G. (ed.) The nordic seas, Springer, Berlin, p. 87–100

    Google Scholar 

  • Weiland, A. L., Mangum, C. P. (1975). The influence of environmental salinity on hemocyanin function in the blue crab,Callinectes sapidus. J. exp. Zool. 193: 265–274

    Google Scholar 

  • Zachariassen, K. E., Baust, J. G., Lee, R. E. (1982). A method for quantitative determination of ice nucleating agents in insect haemolymph. Cryobiol. 19: 180–184

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by T. Fenchel, Helsingør

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aarset, A.V., Aunaas, T. Influence of environmental salinity on oxygen consumption and ammonia excretion of the arctic under-ice amphipodOnisimus glacialis . Mar. Biol. 107, 9–15 (1990). https://doi.org/10.1007/BF01313237

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01313237

Keywords

Navigation