Skip to main content
Log in

Nitrogen excretion and O:N ratios in reef corals: Evidence for conservation of nitrogen

  • Published:
Marine Biology Aims and scope Submit manuscript

Abstract

Rates of ammonia excretion, and respiration to excretion (atomic O:N) ratios were measured for three species of scleractinian coral from the Bahamas, during August 1986 and March 1987, to test the hypothesis that zooxanthellate reef species have lower rates of amino acid catabolism and higher dependence on lipid and carbohydrate catabolism than nonzooxanthellate species. Freshly collected individuals of two reef species,Montastrea annularis andAcropora cervicornis, have significantly lower mean ammonia excretion rates [51 ± 66 nmol (mg-at N)−1 h−1 and 192 ± 172 nmol (mg-at N)−1 h−1, respectively] than those of the tropical nonzooxanthellate speciesTubastrea coccinea [257 ± 68 nmol (mg-at N)−1 h−1]. The temperate nonzooxanthellate coralAstrangia poculata has mean excretion rates [632 ± 242 nmol (mg-at N)−1 h−1] which are much higher than those of all three tropical species. O:N ratios for the two reef species were generally greater than 300, while those of the nonzooxanthellate species ranged from 17 to 39 forT. coccinea and from 8 to 12 forA. poculata. The two reef species conserve nitrogen by having relatively low rates of amino acid catabolism, and support most of their metabolic needs by catabolizing the lipids and carbohydrates they receive from their zooxanthellae. The tropical nonzooxanthellate species has lower rates of ammonia excretion and respiration, and higher O:N ratios than the temperate nonzooxanthellate coral, which may be an indication that the former has less food available to it. The ammonia production rates of the reef species would support doubling times (growth rates) of the zooxanthellae of 13 to 22 d. These growth rates agree with observed rates obtained by mitotic index methods, and with suggestions that growth of zooxanthellae within many corals may be nitrogen-limited.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Literature cited

  • Baldwin, E. (1964). An introduction to comparative biochemistry. 4th ed Cambridge University Press, Cambridge, England

    Google Scholar 

  • Båmstedt, U. (1985). Seasonal excretion rates of macrozooplankton from the Swedish west coast. Limnol. Oceanogr. 30: 607–617

    Google Scholar 

  • Battey, J. F., Patton, J. S. (1984). A reevaluation of glycerol in carbon translocation in zooxanthellae-coelenterate symbiosis. Mar. Biol. 79: 27–38

    Google Scholar 

  • Battey, J. F., Patton, J. S. (1987). Glycerol translocation inCondylactis gigantea. Mar. Biol. 95: 37–46

    Google Scholar 

  • Bayne, B. L., Scullard, C. (1977). Rates of nitrogen excretion by species ofMytilus (Bivalvia: Mollusca). J. mar. biol. Ass. U.K. 57: 5–369

    Google Scholar 

  • Boucher-Rodoni, R., Mangold, K. (1985). Ammonia excretion during feeding and starvation inOctopus vulgaris. Mar. Biol. 86: 193–197

    Google Scholar 

  • Campbell, J. W. (1973). Nitrogen excretion. In: Prosser, C. L. (ed.) Comparative animal physiology. 3rd ed. W. B. Saunders, Philadelphia, p. 279–316

    Google Scholar 

  • Cook, C. B., D'Elia, C. F. (1987). Are natural populations of zooxanthellae ever nutrient limited? Symbiosis 4: 199–212

    Google Scholar 

  • Cook, C. B., D'Elia, C. F., Muller-Parker, G. (1988). Host feeding and nutrient sufficiency for zooxanthellae in the sea anemoneAiptasia pallida. Mar. Biol. 98: 253–262

    Google Scholar 

  • Droop, M. R. (1963). Algae and invertebrates in symbiosis. Symp. Soc. gen. Microbiol. 13: 171–199

    Google Scholar 

  • Ferrer, L. M., Szmant, A. M. (1988). Nutrient regeneration by the endolithic community in coral skeletons. Proc. 6th int. Symp. coral Reefs (in press). [Choat, J. H. et al. (eds.) Sixth International coral Reef Symposium Executive Committee, Townsville, Australia]

    Google Scholar 

  • Fitt, W. K., Pardy, R. L. (1981). Effects of starvation, and light and dark on the energy metabolism of symbiotic and aposymbiotic sea anemones,Anthopleura elegantissima. Mar. Biol. 61: 199–205

    Google Scholar 

  • FitzGerald, L. M., Szmant, A. M. (1988). Amino acid metabolism: adaptations to low nutrient conditions? Proc. 6th int. Symp. coral Reefs (in press). [Choat, J. H. et al. (eds.) Sixth International Coral Reef Symposium Executive Committee, Townsville, Australia]

    Google Scholar 

  • Froelich, A. S. (1980). Studies of the reproduction, nutrition and symbiosis with zooxanthellae of the temperate scleractinian coralAstrangia danae. Ph.D. dissertation, University of Rhode Island

  • Gladfelter, E. H., Monahan, R. K., Gladfelter, W. B. (1978). Growth rates of five reef-building corals in the northeastern Caribbean. Bull. mar. Sci. 28: 728–734

    Google Scholar 

  • Hull, C. H., Nie, N. H. (1981). SPPS update. 7–9: new procedures and facilities for releases 7–9. McGraw Hill Book Co., New York

    Google Scholar 

  • Ikeda, T. (1972). Nutritional ecology of marine zooplankton. Mem. Fac. Fish. Hokkaido Univ. 22: 1–97

    Google Scholar 

  • Ikeda, T., Mitchell, A. W. (1982). Oxygen uptake, ammonia excretion and phosphate excretion by krill and other Antarctic zooplankton in relation to body size and chemical composition. Mar. Biol. 71: 283–298

    Google Scholar 

  • Johannes, R., Wiebe, W. (1970). Method for determination of coral tissue biomass and composition. Limnol. Oceanogr. 15: 822–824

    Google Scholar 

  • Kawaguti, S. (1953). Ammonium metabolism of the reef corals. Biol. J. Okayama Univ. 1: 171–176

    Google Scholar 

  • Kremer, P. (1982). Effects of food availability on the metabolism of the ctenophoreMnemiopsis mccradyi. Mar. Biol. 71: 149–156

    Google Scholar 

  • Kremer, P., Canino, M. F., Gilmer, R. W. (1986). Metabolism of epipelagic tropical ctenophores. Mar. Biol. 90: 403–412

    Google Scholar 

  • Lee, R. F., Hirota, J. (1973). Wax esters in tropical zooplankton and nekton and the geographical distribution of wax esters in marine copepods. Limnol. Oceanogr. 18: 227–239

    Google Scholar 

  • Marsh, J. A. (1970). Primary productivity of reef-building calcareous and red algae. Ecology 51: 255–263

    Google Scholar 

  • Muscatine, L. (1967). Glycerol excretion by symbiotic algae from corals andTridacna and its control by the host. Science, N.Y. 156: 516–519

    Google Scholar 

  • Muscatine, L. (1974). Endosymbiosis of cnidarians and algae. In: Muscatine, L. H. M. Lenhoff, (eds.) Coelenterate biology. Academic Press, New York, p. 359–395

    Google Scholar 

  • Muscatine, L., D'Elia, C. F. (1978). The uptake, retention and release of ammonium by reef corals. Limnol. Oceanogr. 23: 725–734

    Google Scholar 

  • Muscatine, L., Falkowski, P. G., Porter, J. W., Dubinsky, Z. (1984). Fate of photosynthetic fixed carbon in light- and shade-adapted colonies of the symbiotic coralStylophora pistillata. Proc. R. Soc. (Ser. B) 222: 181–202

    Google Scholar 

  • Muscatine, L., Lenhoff, H. M. (1965) Symbiosis of hydra and algae. II. Effects of limited food and starvation on growth of symbiotic and aposymbiotic hydra. Biol. Bull. mar. biol. Lab., Woods Hole 129: 316–328

    Google Scholar 

  • Muscatine, L., Marian, R. E. (1982). Dissolved inorganic nitrogen flux in symbiotic and nonsymbiotic medusae. Limnol. Oceanogr. 27: 910–927

    Google Scholar 

  • Muscatine, L., Masuda, H. and Burnap, R. (1979). Ammonium uptake by symbiotic and aposymbiotic reef corals. Bull. mar. Sci. 29: 572–575

    Google Scholar 

  • Patton, J. S., Burris, J. E. (1983). Lipid synthesis and extrusion by freshly isolated zooxanthellae (symbiotic algae). Mar. Biol. 75: 131–136

    Google Scholar 

  • Peters, E. C., Cairns, S. D., Pilson, M. E. Q., Wells, J. W., Japp, W. C., Lang, J. C., Valeski, C. E., Gollahon, L. S. (1988). Nomenclature and biology ofAstrangia poculata. Proc. biol. Soc. Wash. 101: 234–250

    Google Scholar 

  • Pomeroy, L. R., Kuenzler, E. J. (1969). Phosphorus turnover by coral reef animals. Proc. 2nd natn. Symp. Radioecol. (Ann Arbor, 1967). 2: 474–482. (Copies available from: National Technical Service, U.S. Department of Commerce, Springfield, Va 22161, USA; Ref. AEC-CONF-670503)

    Google Scholar 

  • Porter, J. W. (1974). Zooplankton feeding by the Caribbean reefbuilding coralMontastrea annularis. Proc. 2nd int. Symp. coral Reefs 1: 111–125. [Cameron, A. M. et al. (eds.) Great Barrier Reef Committee, Brisbane, Australia]

    Google Scholar 

  • Porter, J. W. (1976). Autotrophy, heterotrophy and resource partitioning in Caribbean reef corals. Am. Nat. 110: 731–742

    Google Scholar 

  • Quetin, L. B., Ross, R. M., Uchio, K. (1980). Metabolic characteristics of mid water zooplankton: ammonia excretion, O:N ratios, and the effect of starvation. Mar. Biol. 59: 201–209

    Google Scholar 

  • Reimer, A. A. (1971). Observations on the relationships between several species of tropical zoanthids (Zoanthidea, Coelenterata) and their zooxanthellae. J. exp. mar. Biol. Ecol. 7: 207–214

    Google Scholar 

  • Slawyk, G., MacIsaac, J. J. (1972). Comparison of two automated ammonia methods in a region of coastal upwelling. Deep-Sea Res. 19: 521–524

    Google Scholar 

  • Steele, R. D. (1975). Stages in the life history of a symbiotic zooxanthella in pellets extruded by its hostAiptasia tagetes (Duch. and Mich.) (Coelenterata: Anthozoa). Biol. Bull. mar. biol. Lab., Woods Hole 149: 590–600

    Google Scholar 

  • Steele, R. D. (1976). Light intensity as a factor in the regulation of the density of symbiotic zooxanthellae inAiptasia tagetes (Coelenterata, Anthozoa). J. Zool., Lond. 179: 387–405

    Google Scholar 

  • Steele, R. D., Goreau, N. I. (1977). The breakdown of symbiotic zooxanthellae in the sea anemonePhylactis (=Qulactis)flosculifera (Actiniaria). J. Zool., Lond. 181: 421–437

    Google Scholar 

  • Syrett, P. J. (1981). Nitrogen metabolism of microalgae. In: Platt, T. (ed.) Physiological bases of phytoplankton ecology. Can. Bull. Fish. aquat. Sciences 210: 182–210

    Google Scholar 

  • Szmant-Froelich, A., Johnson, A. V., Hoehn, T., Battey, J., Smith, G. J., Fleischmann, E., Porter, J. W., Dallmeyer, D. (1981). The physiological effects of oil drilling mud on the Caribbean coralMontastrea annularis. Proc. 4th int. Symp. coral Reefs 1: 163–168. [Gomez, E. D. et al. (eds.) Marine Sciences Center, University of the Philippines, Quezon City]

    Google Scholar 

  • Szmant-Froelich, A., Pilson, M. E. Q. (1977). Nitrogen excretion by colonies of the temperate coralAstrangia danae with and without zooxanthellae. Proc. 3rd int. Symp. coral Reefs 1: 417–424. [Taylor, D. L. (ed.) School of Marine and Atmospheric Sciences, University of Miami]

    Google Scholar 

  • Szmant-Froelich, A., Pilson, M. E. Q. (1984). Effects of feeding frequency and symbiosis with zooxanthellae on nitrogen metabolism and respiration of the coralAstrangia danae. Mar. Biol. 81: 153–162

    Google Scholar 

  • Verity, P. G. (1985). Ammonia excretion rates of oceanic copepods and implications for estimates of primary production in the Sargasso Sea. Biol. Oceanogr. 3: 249–282

    Google Scholar 

  • Wilkerson, F. P., Kobayashi, D., Muscatine, L. (1988). Mitotic index and size of symbiotic algae in Caribbean reef corals. Coral Reefs 7: 29–36

    Google Scholar 

  • Wilkerson, F. P., Muscatine, L. (1984). Uptake and assimilation of dissolved inorganic nitrogen by a symbiotic sea anemone. Proc. R. Soc. (Ser. B) 221: 71–86

    Google Scholar 

  • Wilkerson, F. P., Trench, R. K. (1986). Uptake of dissolved inorganic nitrogen by the symbiotic clamTridacna gigas and the coralAcropora sp. Mar. Biol. 93: 237–246

    Google Scholar 

  • Yamazato, K. (1970). Calcification in a solitary coral,Fungia scutaria Lamarck, in relation to environmental factors. Bull. Sci. Eng Div. Univ. Ryukyus Math (Naha, Okinawa) (Math. nat. Sciences) 13: 57–122

    Google Scholar 

  • Yonge, C. M., Nicholls, A. G. (1931). Studies on the physiology of corals. IV. The structure, distribution and physiology of the zooxanthellae. Scient. Rep. Gt Barrier Reef Exped. 1: 135–176

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by J. M. Lawrence, Tampa

Rights and permissions

Reprints and permissions

About this article

Cite this article

Szmant, A.M., Ferrer, L.M. & FitzGerald, L.M. Nitrogen excretion and O:N ratios in reef corals: Evidence for conservation of nitrogen. Mar. Biol. 104, 119–127 (1990). https://doi.org/10.1007/BF01313165

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01313165

Keywords

Navigation