Advertisement

manuscripta mathematica

, Volume 29, Issue 2–4, pp 323–352 | Cite as

Discontinuous solutions of a nonlinear hyperbolic equation with unilateral constraints

  • Claudio Citrini
Article

Abstract

We describe firstly an unilateral problem for the homogeneous wave equation in two variables, giving existence, uniqueness and continuous dependence results, and a description of the pencil of the solutions in the cases where uniqueness fails to hold. In particular we prove the existence of super- and subsolutions. We apply then the above results to the equation ytt−yxx=F(x,t,y) with unilateral constraints whose support lies on a line in a generalized half strip in the (x,t) plane.

Keywords

Wave Equation Number Theory Algebraic Geometry Topological Group Hyperbolic Equation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    AMERIO L;: Su un problema di vincoli unilaterali per l'equazione non omogenea della corda vibrante. IAC, Ist. Appl. Calcolo Consiglio naz. Ricerche, Pubbl., Ser. III, n. 109 (1976)Google Scholar
  2. [2]
    AMERIO L.: On the motion of a string vibrating through a moving ring with continuously variable diameter. Atti Accad. naz. lincei, VIII Ser., Rend. Cl. Sci. fis. mat. natur.62, 134–142 (1977)Google Scholar
  3. [3]
    AMERIO L.: A unilateral problem for a nonlinear vibrating string equation. Atti Accad. naz. Lincei, VIII Ser., Rend. Cl. Sci. fis. mat. natur.64, 8–21 (1978)Google Scholar
  4. [4]
    AMERIO L.: Continuous solutions of the problem of a string vibrating against an obstacle. Rend. Sem. mat. Univ. Padova,59 (1978) to appearGoogle Scholar
  5. [5]
    CITRINI C.: The energy theorem in the impact of a string vibrating against a pointshaped obstacle. Atti Accad. naz. Lincei, VIII Ser., Rend. Cl. Sci. fis. mat. natur.62, 143–149 (1977)Google Scholar
  6. [6]
    CITRINI C.: Risultati tipici sul problema della corda vibrante con ostacolo puntiforme. IAC, Ist. Appl. Calcolo Consiglio naz. Ricerche, Pubbl., Ser. III, n. 134 (1978)Google Scholar
  7. [7]
    FRONTINI M., GOTUSSO L.: Risultati analitici dedotti da una sperimentazione numerica per l'equazione della corda vibrante con ostacolo puntiforme. IAC, Ist. Appl. Calcolo Consiglio naz. Ricerche, Quaderni, Ser. III, n. 67 (1978)Google Scholar
  8. [8]
    HOBSON E.W.: The theory of functions of a real variable, 3rd edn, New York: Dover Publ., 1927Google Scholar
  9. [9]
    NATANSON I.P.: Theorie der Funktionen einer reellen Veraenderlichen, (germ. transl.), Berlin: Akademie Verlag, 1961Google Scholar
  10. [10]
    ROTMAN B., KNEEBONE G.T.: The theory of sets and transfinite numbers, London: Oldbourne 1966Google Scholar
  11. [11]
    WALTER W.: Differential and integral inequalities (engl. transl.), Berlin-Heidelberg-New York: Springer 1970Google Scholar

Copyright information

© Springer-Verlag 1979

Authors and Affiliations

  • Claudio Citrini
    • 1
  1. 1.Istituto di Matematica della Facoltà di IngegneriaPolitecnico di MilanoMilanoItaly

Personalised recommendations