Skip to main content
Log in

Line integration of Ricci curvature and conjugate points in Lorentzian and Riemannian manifolds

  • Published:
manuscripta mathematica Aims and scope Submit manuscript

Abstract

Generalizing results of Cohn-Vossen and Gromoll, Meyer for Riemannian manifolds and Hawking and Penrose for Lorentzian manifolds, we use Morse index theory techniques to show that if the integral of the Ricci curvature of the tangent vector field of a complete geodesic in a Riemannian manifold or of a complete nonspacelike geodesic in a Lorentzian manifold is positive, then the geodesic contains a pair of conjugate points. Applications are given to geodesic incompleteness theorems for Lorentzian manifolds, the end structure of complete noncompact Riemannian manifolds, and the geodesic flow of compact Riemannian manifolds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Anosov, D. V.: Geodesic flows on closed Riemannian manifolds with negative curvature. Proc. Steklov Institute90(1967), Amer. Math. Soc. (1969)

  2. Beem, J. K.: Some examples of incomplete space-times. Gen. Rel. Grav.7, 501–509 (1976)

    Google Scholar 

  3. Beem, J. K. and Ehrlich, P. E.: A Morse index theorem for null geodesics. Duke Math. J.46, 561–569 (1979)

    Google Scholar 

  4. Beem, J. K. and Ehrlich, P. E.: Cut points, conjugate points and Lorentzian comparison theorems. Math. Proc. Camb. Phil. Soc.86, 365–384 (1979)

    Google Scholar 

  5. Beem, J. K. and Ehrlich, P. E.: Singularities, incompleteness and the Lorentzian distance function. Math. Proc. Camb. Phil. Soc.85, 161–178 (1979)

    Google Scholar 

  6. Beem, J. K. and Ehrlich, P. E.:The Lorentzian distance function and global Lorentzian geometry. Marcel Dekker Monographs in Pure and Applied Math., to appear

  7. Bölts, G.: Existenz und Bedeutung von konjugierten Werten in der Raum-Zeit. Bonn University Diplomarbeit (1977)

  8. Cheeger, J. and Gromoll, D.: The splitting theorem for manifolds of nonnegative Ricci curvature. J. Diff. Geom.6, 119–128 (1971)

    Google Scholar 

  9. Cohn-Vossen, S.: Totalkrümmung und geodätische Linien auf einfach zusammenhängenden offenen vollständigen Flächenstücken. Recueil Math. de Moscou43, 139–163 (1936)

    Google Scholar 

  10. Daczer, M. and Nomizu, K.: On the boundedness of Ricci curvature of an indefinite metric. Bol. Soc. Brasil Math., to appear

  11. Eberlein, P.: When is a geodesic flow of Anosov type I. J. Diff. Geom.8, 437–463 (1973)

    Google Scholar 

  12. Eschenburg, J.-H. and O'Sullivan, J.: Growth of Jacobi fields and divergence of geodesics. Math. Z.150, 221–237 (1976)

    Google Scholar 

  13. Geroch, R.: What is a singularity in General Relativity, Ann. Physics (New York)48, 526–540 (1968)

    Google Scholar 

  14. Green, L.: A theorem of E. Hopf. Mich. Math. J.5, 31–34 (1958)

    Google Scholar 

  15. Gromoll, D., Klingenberg, W. and Meyer, W.:Riemannsche Geometrie im Grossen. Springer Verlag Lecture Notes in Math.55 (1975)

  16. Gromoll, D., and Meyer, W.: On complete open manifolds of positive Ricci curvature. Annals Math.90, 75–90 (1969)

    Google Scholar 

  17. Hawking, S. and Ellis, G.:The large scale structure of spacetime. Cambridge Monographs on Math. Physics (1973)

  18. Hawking, S. and Penrose, R.: The singularities of gravitational collapse and cosmology. Proc. Roy. Soc. Lond. Ser. A.314, 529–548 (1970)

    Google Scholar 

  19. Klingenberg, W.: Riemannian manifolds with geodesic flow of Anosov type. Annals Math.99, 1–13 (1974)

    Google Scholar 

  20. Kundt, W.: Note on the completeness of space-times. Z. für Physik172, 488–489 (1963)

    Google Scholar 

  21. Tipler, F.: General Relativity and conjugate ordinary differential equations. J. D. E.30, 165–174 (1978)

    Google Scholar 

  22. Tipler, F.: On the nature of singularities in general relativity. Phys. Rev. D15, 942–945 (1977)

    Google Scholar 

  23. Uhlenbeck K.: A Morse theory for geodesics on a Lorentz manifold. Topology14, 69–90 (1975)

    Google Scholar 

  24. Woodhouse, N.: An application of Morse theory to spacetime geometry. Commun. Math. Phys.46, 135–152 (1976)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Partially supported by NSF grant MCS77-18723(02).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chicone, C., Ehrlich, P. Line integration of Ricci curvature and conjugate points in Lorentzian and Riemannian manifolds. Manuscripta Math 31, 297–316 (1980). https://doi.org/10.1007/BF01303279

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01303279

Keywords

Navigation