Skip to main content
Log in

De Broglie's wave particle duality in the stochastic interpretation of quantum mechanics: A testable physical assumption

  • Part II. Invited Papers Dedicated To Louis De Broglie
  • Published:
Foundations of Physics Aims and scope Submit manuscript

Abstract

If one starts from de Broglie's basic relativistic assumptions, i.e., that all particles have an intrinsic real internal vibration in their rest frame, i.e., hv 0 =m 0 c2; that when they are at any one point in space-time the phase of this vibration cannot depend on the choice of the reference frame, then, one can show (following Mackinnon(1)) that there exists a nondispersive wave packet of de Broglie's waves which can be assimilated to the nonlinear soliton wave U 0 introduced by him in his double solution model of wave mechanics.(2) Since de Broglie's linear pilot waves can be considered to be real waves propagating as collective motions on a covariant subquantum chaotic “aether,”(3) these new solition waves can be considered as describing the particle's immediate neighborhood, i.e., the aether's reaction to the particle's motion in the stochastic interpretation of quantum mechanics. The existence of such a physical aether (which provides a perfectly causal interpretation of the action-a-distance implied by the Einstein-Podolsky-Rosen experiments) can now be proved by establishing the reality of de Broglie's waves in realizable experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. Mackinnon,Found. Phys. 11, 907 (1981).

    Google Scholar 

  2. L. de Broglie,Une tentative d'interprétation causale et non-linéaire de la Mécanique Ondulatoire (Gauthier-Villars, Paris, 1956).

    Google Scholar 

  3. P. A. M. Dirac,Nature (London),168, 906 (1951). For a recent review, see J. P. Vigier,Lett. al Nuovo Cimento 29, 467 (1980).

    Google Scholar 

  4. A. Aspect,Phys. Rev. D 14, 1944 (1978);Phys. Rev. Lett. 47, 480 (1980).

    Google Scholar 

  5. L. Pappalardo and V. A. Rapisarda,Lett. Nuovo Cimento 29, 221 (1980). A. Garuccio and V. A. Rapisarda,Nuovo Cimento, A 65, 269 (1981).

    Google Scholar 

  6. D. Bohm,Quantum Theory (Prentice-Hall, Englewood Cliffs, N.J., 1951).

    Google Scholar 

  7. A. Einstein, B. Podolsky, and N. Rosen,Phys. Rev. 47, 777 (1935).

    Google Scholar 

  8. N. Bohr.Phys. Rev. 48, 696 (1935).

    Google Scholar 

  9. D. Bohm and J.-P. Vigier,Phys. Rev. 96, 208 (1954); L. de Broglie,Thermodynamique de la particule isolée (Gauthier-Villars, Paris, 1964); W. Lehr and J. Park,J. Math. Phys. 18, 1235 (1977); E. Nelson,Phys. Rev. 150, 1079 (1966); J. P. Vigier,Lett. al Nuovo Cimento 24, 258, 265 (1979).

    Google Scholar 

  10. O. Costa de Beauregard,Nuovo Cimento 42, B, 41 (1977);Nuovo Cimento 51, B, 267 (1979).

    Google Scholar 

  11. N. Cufaro-Petroni, Ph. Droz-Vincent, and J. P. Vigier,Lett. al Nuovo Cimento 31, 415 (1981).

    Google Scholar 

  12. A. Garuccio, K. R. Popper, and J.-P. Vigier,Phys. Lett. 86, A, 397 (1981).

    Google Scholar 

  13. E. E. Fitchard,Found. Phys. 9, 525 (1979).

    Google Scholar 

  14. A. Garuccio, V. A. Rapisarda, and J. P. Vigier, “New Experimental Set-up for the Detection of the de Broglie Waves,”Phys. Lett. (1982).

  15. J. P. Vigier,Lett. Nuovo Cimento 24, 258, 265 (1979).

    Google Scholar 

  16. L. de la Pena Auerbach,J. Math. Phys. 12, 453 (1971); N. Cufaro-Petroni and J.-P. Vigier,Phys. Lett. 81, A, 12 (1981).

    Google Scholar 

  17. N. Cufaro-Petroni and J.-P. Vigier,Phys. Lett. 73A, 4, 289 (1979).

    Google Scholar 

  18. F. Guerra and P. Ruggiero,Lett. al Nuovo Cimento 23, 529 (1978).

    Google Scholar 

  19. J.-P. Vigier,Lett. Nuovo Cimento 29, 467 (1980).

    Google Scholar 

  20. C. Eckart,Phys. Rev. 58, 919 (1950).

    Google Scholar 

  21. F. Halbwachs,Théorie Relativiste des Fluides à Spin (Gauthier-Villars, Paris, 1960).

    Google Scholar 

  22. Ph. Guèret and J. P. Vigier,Une équation non linéaire de Klein-Gordon en Mécanique Ondulatoire, possèdant une solution non dispersive du type soliton, IHP Preprint, March 1982.

  23. A. Einstein, “Physik und Realität,”Journ. of the Franklin Inst. 221, 313 (1936).

    Google Scholar 

  24. L. de Broglie,La Physique restera-t-elle indéterministe? (Gauthier-Villars, Paris, 1953).

    Google Scholar 

  25. A. C. Scott, F. Y. F. Chu, and D. Mc Laughlin,Proc. of the IEEE 61, 10 (1972).

    Google Scholar 

  26. L. de Broglie,Ann. Phys. (Paris)3, 22 (1925).

    Google Scholar 

  27. H. Yukawa,Proc. of the International Conference on Elem. Particles (Kyoto, 1965).

  28. C. Fenech, M. Moles, and J.-P. Vigier,Lett. al Nuovo Cimento 24, 56 (1979).

    Google Scholar 

  29. F. Halbwachs, J.-M. Souriau, and J.-P. Vigier,J. Phys. Radium 22, 26 (1981).

    Google Scholar 

  30. Ph. Guéret, M. Moles, P. Merat, and J.-P. Vigier,Lett. Math. Phys. 3, 47 (1979); N. Cufaro-Petroni, Z. Maric, Dj. Zivanovic, and J.-P. Vigier,J. Phys. A, Math. Gen. 14, 501–508 (1981); N. Cufaro-Petroni, Z. Maric, Dj. Zivanovic, and J.-P. Vigier,Lett. al Nuovo Cimento 29, 17, 565 (1980).

    Google Scholar 

  31. P. A. M. Dirac,Proc. Roy. Soc. 167, A, 448 (1933).

    Google Scholar 

  32. P. C. Clemmow and R. D. Harding,J. Plasma Phys. 23, 71 (1980).

    Google Scholar 

  33. L. de Broglie,Cahiers de Phys. 147, 1 (1962).

    Google Scholar 

  34. L. Mackinnon,Lett. al Nuovo Cimento 32, 10 (1981).

    Google Scholar 

  35. L. de Broglie,C. R. Acad. Sci. 180, 498 (1925).

    Google Scholar 

  36. R. C. Jennison,J. Phys. A, Math. Gen. 11, 1525 (1978).

    Google Scholar 

  37. E. C. Kemble,Fundamental Principles of Quantum Mechanics (McGraw-Hill, New York, 1937).

    Google Scholar 

  38. L. de la Pena and A. M. Cetto,Found. Phys. 5, 355 (1975).

    Google Scholar 

  39. A. Einstein and J. Grommer,Sitz. Preuss. Acad. Wiss. 1 (1927).

  40. A. Einstein and L. Infeld,Ann. Math. 41, 455 (1940).

    Google Scholar 

  41. B. d'Espagnat,La Physique et le réel.

  42. L. de Broglie, G. Lochak, J. A. Beswick, and J. Vassalo-Pereira,Found. Phys. 6, 1, 3 (1976).

    Google Scholar 

  43. D. Bohm and J. Hiley,Found. Phys. 11, 529 (1981).

    Google Scholar 

  44. F. Selleri, “Can an Actual Existence be Guaranted on Quantum Waves?”Nuov.-Cim. (to be published).

  45. F. Selleri,Lett. al Nuovo Cimento,9, 8 (1979).

    Google Scholar 

  46. R. Martinolli (Reporter A. Gozzini),Un esperimento in Ottica a Intensità Molto Basse (Tesi di Laurea, Università di Pisa (October 1980).

  47. L. Mandel and R. L. Pfleegor,Phys. Rev. 159, 1084 (1967);Journ. Opt. Soc. Amer. 58, 946 (1968).

    Google Scholar 

  48. L. Mandel and K. Dajenais,Phys. Rev. Lett. A18, 2217 (1978).

    Google Scholar 

  49. A. Gozzini,Programma di Ricerca (Università di Pisa Preprint, 1982).

  50. G. Grynberg, F. Biraben, M. Bassini, and B. Cagnac,Phys. Rev. Lett. 37, 284 (1976).

    Google Scholar 

  51. L. Mackinnon,Found. Phys. 11, 907 (1981).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gueret, P., Vigier, J.P. De Broglie's wave particle duality in the stochastic interpretation of quantum mechanics: A testable physical assumption. Found Phys 12, 1057–1083 (1982). https://doi.org/10.1007/BF01300546

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01300546

Keywords

Navigation