Advertisement

manuscripta mathematica

, Volume 32, Issue 1–2, pp 137–148 | Cite as

On the peripheral spectrum

  • Jose I. Nieto
Article

Keywords

Number Theory Algebraic Geometry Topological Group Peripheral Spectrum 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    BIRKHOFF, G.: Orthogonality in linear metric spaces. Duke Math. J.1 169–172 (1935)Google Scholar
  2. [2]
    BONSALL, F. F. and DUNCAN, J.: Numerical Ranges of operators...London Math. Soc. Lecture Notes Series 2 (1971)Google Scholar
  3. [3]
    BONSALL, F. F. and DUNCAN, J.: Numerical Ranges II. London Math. Soc. Lecture Notes Series 10 (1973)Google Scholar
  4. [4]
    HALMOS, P. R.: A Hilbert space problem book. Van Nostrand (1967)Google Scholar
  5. [5]
    HEUSER, H.: Funktionanalysis. Teubner Stuttgart (1975)Google Scholar
  6. [6]
    LIN, M.: On the uniform ergodicity theorem, Proc. Amer. Math. Soc.43, 2, 337–340 (1974)Google Scholar
  7. [7]
    LUECKE, G. R.: Norm convergence of Tn. Can. J. Math.29, 6 1340–1344 (1977)Google Scholar
  8. [8]
    McFARLANE, K.: On quasipositive operators and the spectral radius. University of Montreal, Ph.D. thesis (1978)Google Scholar
  9. [9]
    MOTT, J.L. and SCHNEIDER, H.: Matrix algebras and groups relatively bounded in norm. Arch. Math.10, 1–6 (1959)Google Scholar
  10. [10]
    SINCLAIR, A. M.: Eigenvalues in the boundary of the numerical range. Pacific J. Math.35, 1, 231–234 (1970)Google Scholar

Copyright information

© Springer-Verlag 1980

Authors and Affiliations

  • Jose I. Nieto
    • 1
  1. 1.Département de MathématiquesUniversité de MontréalMontréalCanada

Personalised recommendations