Advertisement

manuscripta mathematica

, Volume 62, Issue 2, pp 163–179 | Cite as

Congruences dyadiques entre nombres de classes de corps quadratiques

  • Pierre -Jean Desnoux
Article

Abstract

We prove here a general mod 16 congruence between the class numbers of the two fields\(\mathbb{Q}(\sqrt d )\) and\(\mathbb{Q}(\sqrt { - d} )\), for any square free positive integer d. Similarly we obtain congruences mod 64 relating the class numbers of the quadratic extensions corresponding to the integers d, 2d, -d, -2d. We use the p-adic analytic class number formula, which leads to study the difference of the values at 0 and 1 of the KUBOTA-LEOPOLDT's p-adic L-function (for p=2, and for the quadratic character associated to the real quadratic field). We use then IWASAWA's series, conveniently described for our purpose by Barsky. This gives a new proof for mod 16 congruences formally or simultaneously obtained by various authors. Moreover we get new results mod 16 and mod 64.

Part A) presents the method and results, Part B) the proofs. All the details can be found in [4].

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliographie

  1. [1]:
    AMICE, Y.: Les nombres p -adiques. Paris, P.U.F., 1975Google Scholar
  2. [2]:
    AMICE, Y. et FRESNEL, J.: Fonctions zêta p-adlques des corps de nombres abéllens réels. Acta Arith.20, 353–384(1972)Google Scholar
  3. [3]:
    BARSKY, D.: Sur la norme de certaines séries d'Iwasawa. Groupe d'étude d'analyse ultramétrique (Amice, Christol, Robba) 10e année, no 13, 44 p. (1982–83)Google Scholar
  4. [4]:
    DESNOUX, P-J.: Congruences dyadiques entre nombres de classes de corps quadratiques. Thèse de Doctorat soutenue à Paris VII le 2 Février 1987Google Scholar
  5. [5]:
    GRAS, G. Pseudo-mesures p-adiques associées aux fonctions L de\(\mathbb{Q}\). Manuscripta Math.57, 373–415 (1987)Google Scholar
  6. [6]:
    IWASAWA, K.: Lectures on p-adic L functions. Princeton, Princ. Univ. Press & Univ. of Tokyo Press, 1972 (Annals of Math. Studies74)Google Scholar
  7. [7]:
    KAPLAN, P.: Sur le 2-groupe des classes d'idéaux des corps quadratiques. J. für die reine und angew. Math.283/284, 313–363 (1976)Google Scholar
  8. [8]:
    KAPLAN, P.: Nouvelle démonstration d'une congruence modulo 16 entre les nombres de classes d'idéaux de\(\mathbb{Q}(\sqrt { - 2p} )\) et\(\mathbb{Q}(\sqrt {2p} )\) pour p≡1 [4]. Proc. Japan Acad. (Série A)57, 507–509 (1961)Google Scholar
  9. [9]:
    KAPLAN, P. et WILLIAMS, K.S.: Congruences mod 16 for the class numbers of\(\mathbb{Q}(\sqrt { \pm p} )\) and\(\mathbb{Q}(\sqrt { \pm 2p} )\) for p a prime congruent to 5 modulo 8. Acta Arith.40 375–397,(1981/1982)Google Scholar
  10. [10]:
    KAPLAN, P. et WILLIAMS, K.S.: On the class numbers of\(\mathbb{Q}(\sqrt { \pm 2p} )\) modulo 16, for p≡1 [8] a prime. Acta Arith.40, 289–296 (1981/1982)Google Scholar
  11. [11]:
    KAPLAN, P. et WILLIAMS, K.S.: Congruences for the class numbers of the fields\(\mathbb{Q}(\sqrt { \pm pq} )\) with p and q odd primes. (Preprint)Google Scholar
  12. [12]:
    KUBOTA,T. und LEOPOLDT, H.W.: Eine p-adische Theorie der Zetawerte. I: Einführung der p-adischen Dirichletschen L Funktionen. J. für die reine und angew. Math.214/215. 328–339 (1964)Google Scholar
  13. [13]:
    LANG, H. und SCHERTZ, R.: Kongruenzen zwischen Klassenzahlen quadratischer Zahlkörper. Journal of Number Theory8, 352–365 (1976)Google Scholar
  14. [14]:
    MORDELL, L.J.: The congruence ((p−1)/2)!≡±1 (mod p). Amer. Math. Monthly68, 145–146 (1961)Google Scholar
  15. [15]:
    WASHINGTON, L.C.: Introduction to Cyclotomic Fields. Berlin-Heidelberg-New York, Springer-Verlag, 1982 (Graduate Texts in Math.83)Google Scholar
  16. [16]:
    WILLIAMS, K.S.: On the class number of\(\mathbb{Q}(\sqrt { - p} )\) modulo 16, for p≡1 modulo 8 a prime. Acta Arith.39, 381–398 (1981)Google Scholar
  17. [17]:
    WILLIAMS, K.S.: Congruences modulo 8 for the class numbers of\(\mathbb{Q}(\sqrt { \pm p} )\), p≡3 (mod 4) aprime. Journal of Number Theory15, no2, 182–198Google Scholar

Copyright information

© Springer-Verlag 1988

Authors and Affiliations

  • Pierre -Jean Desnoux
    • 1
  1. 1.Paris

Personalised recommendations