Skip to main content
Log in

Summierbarkeit der geometrischen Reihe auf vorgeschriebenen Mengen

  • Published:
manuscripta mathematica Aims and scope Submit manuscript

Abstract

In this paper we are concerned with the summability of the geometric series\(\sum\limits_{v = 0}^\infty {z^v } \) by matrix methods. We prove the following theorem: Suppose Mo:={z:|z|<1}, M1, M2, ⋯ is a collection of countably many Lebesgue measureable, disjoint sets. For k=1,2,⋯ let fk be a prescribed function, analytic on\(\overline {M_k } \). Then there exists a triangular matrix\(V = (c_{n^v } )\), such that the V-transform {σn(z)} of the geometric series has the following properties: {σn(z)} converges compactly to\(\frac{1}{{1 - z}}\) on Mo; for k=1,2,⋯ there are sets Bk, such that\(B_{k^\Delta } M_k \) has Lebesgue-measure zero and σn(z)→fk(z) for zεBk; if\(M^ * = [\mathop u\limits_{k \geqq 0} M_k ]^c \) there is a set B*, such that B*ΔM* has Lebesgue-measure zero and {σn(z)} diverges for zεB*.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literatur

  1. ISRAPILOV, R.B.: Sets of summability of power series by linear methods. (Russian). Vestnik Moskov. Univ. Ser. I Mat. Meh.24 (1969), no. 3, 22–29.

    Google Scholar 

  2. LUH, W.: Über die Summierbarkeit der geometrischen Reihe. Erscheint in Mitt. Math. Sem. Gieβen.

  3. MARKUSHEVICH, A.I.: Theory of functions of a complex variable. Vol. III. Revised English edition, translated by R.A. Silverman. Prentice-Hall, Inc., Englewood Cliffs, N.J. 1967.

    Google Scholar 

  4. PEYERIMHOFF, A.: Lectures on summability. Lecture Notes in Mathematics, Springer Verlag 1970.

  5. RUSSELL, D.C.: Summability of power series on continuous arcs outside the circle of convergence. Acad. Roy. Belg. Bull. Cl. Sci. (5)45 (1959), 1006–1030.

    Google Scholar 

  6. TOLBA, S.E.: On the summability of Taylor series at isolated points outside the circle of convergence. Nederl. Akad. Wetensch. Proc. Ser. A.55 (1952), 380–387.

    Google Scholar 

  7. VERMES, P.: Conservative series to series transformation matrices. Acta Sci. Math. (Szeged),14 (1951), 23–28.

    Google Scholar 

  8. VERMES, P.: Convolution of summability methods. J. d'Analyse math. (Jerusalem),2 (1952), 160–177.

    Google Scholar 

  9. VERMES, P.: Summability of power series at unbounded sets of isolated points. Acad. Roy. Belg. Bull. Cl. Sci. (5)44 (1958), 830–838.

    Google Scholar 

  10. VERMES, P.: Summability of power series in simply or multiply connected domains. Acad. Roy. Belg. Bull. Cl. Sci. (5),44 (1958), 188–198.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Luh, W., Trautner, R. Summierbarkeit der geometrischen Reihe auf vorgeschriebenen Mengen. Manuscripta Math 18, 317–326 (1976). https://doi.org/10.1007/BF01270492

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01270492

Navigation