manuscripta mathematica

, Volume 62, Issue 1, pp 1–20 | Cite as

Effective formulas for the Carathéodory distance

  • M. Jarnicki
  • P. Pflug


For a class of Reinhardt domains we give formulas for the Carathéodory distance. As an application we discuss the product property of the Carathéodory distance when one factor domain is a Reinhardt domain of special type.


Number Theory Algebraic Geometry Topological Group Product Property Factor Domain 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Jarnicki, M., Pflug, P.: Existence domains of holomorphic functions of resticted growth. Trans. A. M. S.304, 385–404 (1987)Google Scholar
  2. [2]
    Jarnicki, M., Pflug, P.: Three remarks about the Carathéodory distance. Seminar on Deformations, Lódź-Lublin 1985/86, Part II: Complex Analytic Geometry, D. Reidel Publishing Company (to appear)Google Scholar
  3. [3]
    Pick, G.: Geometrisches zur Zahlenlehre. Lotos, Naturwissenschaftliche Zeitschrift, Prag, 311–319 (1899)Google Scholar
  4. [4]
    Simha, R. R.: The Carathéodory metric of the annulus. Proc. A. M. S.50, 162–166, (1975)Google Scholar
  5. [5]
    Vesentini, E.: Complex geodesics. Compositio Math.44, 375–394 (1981)Google Scholar
  6. [6]
    Vigué, J. P.: Points fixes d'applications holomorphes dans un domaine borné convexe de ℂn. Trans. A. M. S.289, 345–353 (1985)Google Scholar

Copyright information

© Springer-Verlag 1988

Authors and Affiliations

  • M. Jarnicki
    • 1
  • P. Pflug
    • 2
  1. 1.Instytut MatematykiUniwersytet JagiellońskiKrakówPoland
  2. 2.Abteilung VechtaUniversität OsnabrückVechtaGermany

Personalised recommendations