Skip to main content
Log in

The Clifford bundle and the nature of the gravitational field

  • Part III. Invited Papers Dedicated To David Hestenes
  • Published:
Foundations of Physics Aims and scope Submit manuscript

Abstract

In this paper we formulate Einstein's gravitational theory with the Clifford bundle formalism. The formalism suggests interpreting the gravitational field in the sense of Faraday, i.e., with the field residing in Minkowski spacetime. We succeeded in discovering the condition for this interpretation to hold. For the variables that play the role of the gravitational field in our theory, the Lagrangian density turns out to be of the Yang-Mills type (with an auto-interaction plus gauge-fixing terms). We give a brief comparison of our theory with other field theories of the gravitational field in the flat Minkowski spacetime.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. K. Sachs and H. Wu,General Relativity for Mathematicians (Springer, New York, 1977).

    Google Scholar 

  2. W. A. Rodrigues, Jr., and M. A. Faria-Rosa, “The meaning of time in the theory of relativity and ‘Einstein's later view of the twin paradox’,”Found. Phys. 19, 705–724 (1989).

    Google Scholar 

  3. B. O'Neill,Elementary Differential Geometry (Academic Press, New York, 1966).

    Google Scholar 

  4. J. K. Beem and P. E. Ehrlich,Global Lorentzian Geometry (Marcel Dekker, New York, 1981).

    Google Scholar 

  5. H. Poincaré, “Sur la dynamique de l'electron”,Rend. C. Math. Palermo XXI, 129–175 (1906).

    Google Scholar 

  6. N. Rosen, “General relativity on flat space I”,Phys. Rev. 57, 147–150 (1940).

    Google Scholar 

  7. N. Rosen, “Flat-space metric in general relativity,”Ann. Phys. 22, 1–11 (1963).

    Google Scholar 

  8. A. Papapetrou, “Eine neue Theorie des Gravitationsfeldes”, Part I:Math. Nachr. 12, 129–141 (1954); Part II:Math. Nachr. 12, 143–154 (1954).

    Google Scholar 

  9. R. H. Kraichnan, “Special-relativistic derivation of generally covariant gravitational theory,”Phys. Rev. 98, 1118–1122 (1955).

    Google Scholar 

  10. S. N. Gupta, “Einstein's and other theories of gravitation,”Rev. Mod. Phys. 29, 334–336 (1957).

    Google Scholar 

  11. R. P. Feynman, “Quantum theory of gravitation,”Acta Phys. Pol. 24, 697–722 (1963).

    Google Scholar 

  12. F. J. Belinfante and J. C. Swihart, “Phenomenological linear theory of gravitation,” Part I:Ann. Phys. (Leipzig) 1, 168–195 (1957); Part II:Ann. Phys. (Leipzig) 1, 196–212 (1957); Part III:Ann. Phys. (Leipzig) 2, 81–99 (1957).

    Google Scholar 

  13. V. I. Ogievetsky and I. V. Polubarinon, “Interacting field of spin 2 and the Einstein equations,”Ann. Phys. (Leipzig) 35, 167–208 (1965).

    Google Scholar 

  14. S. Weinberg, “Photons and gravitons in perturbation theory: derivation of Maxwell's and Einstein's equations,”Phys. Rev. B 138, 988–1002 (1965).

    Google Scholar 

  15. Ya. B. Zel'dovich and I. D. Novikov,The Theory of Gravitation and the Evolution of Stars (Nauka, Moscow, 1971), p. 87.

    Google Scholar 

  16. L. P. Grishchuk, A. N. Petrov, and A. D. Popova, “Exact theory of (Einstein) gravitational field in an arbitrary background spacetime,”Commun. Math. Phys. 94, 379–396 (1984).

    Google Scholar 

  17. A. A. Logunov and M. A. Mestvirishvili, “Relativistic theory of gravitation,”Found. Phys. 16, 1–26 (1986).

    Google Scholar 

  18. A. A. Logunov, Yu. M. Loskutov, and M. A. Mestvirishvili, “Relativistic theory of gravity,”Int. J. Mod. Phys. 43, 2067–2099 (1988).

    Google Scholar 

  19. Ya. B. Zel'dovich and L. P. Grishchuk, “Gravitation, the general theory of relativity and alternative theories,”Sov. Phys. Usp. 29, 780–787 (1976).

    Google Scholar 

  20. D. Hestenes,Space-Time Algebra (Gordon & Breach, New York, 1966, 1987, 1992).

    Google Scholar 

  21. Q. A. G. de Souza and W. A. Rodrigues, Jr., “The Dirac operator and the structure of Riemann-Cartan-Weyl spaces,” submitted for publication, 1993.

  22. A. Einstein, “Hamiltonsches Prinzip und allgemeine Relativitätstheorie,”Sitzungsber. Preuss. Akad. Wiss. (Berlin), 1111–1116 (1916).

  23. M. Ferraris and J. Kijowski, “On the equivalence of relativistic theories of gravitation,”Gen. Relativ. Gravit. 14, 165–180 (1982).

    Google Scholar 

  24. W. Graf, “Differential forms as spinors,”Ann. Inst. H. Poincaré XXIX, 85–109 (1978).

    Google Scholar 

  25. R. Ablamowicz, P. Lounesto, and J. Maks, “Conference reports: Second workshop on Clifford algebra and their applications in mathematical physics,”Found. Phys. 21, 735–748 (1991).

    Google Scholar 

  26. P. Lounesto, “Clifford algebras and Hestenes spinors,”Found. Phys. 23, 1203–1237 (1993).

    Google Scholar 

  27. V. L. Figueiredo, E. C. Oliveira, and W. A. Rodrigues, Jr., “Covariant, algebraic and operator spinors,”Int. J Theor. Phys. 29, 371–395 (1990).

    Google Scholar 

  28. V. L. Figueiredo, E. C. Oliveira, and W. A. Rodrigues, Jr., “Clifford algebras and the hidden geometrical nature of spinors,”Algebras, Groups and Geometries 7, 153–198 (1990).

    Google Scholar 

  29. D. Hestenes and G. Sobczyk,Clifford Algebra to Geometric Calculus (Reidel, Dordrecht, 1984, 1987).

    Google Scholar 

  30. W. A. Rodrigues, Jr., and V. L. Figueiredo, “Real spin Clifford bundle and the spinor structure of spacetime,”Int. J. Theor. Phys. 29, 413–424 (1990).

    Google Scholar 

  31. W. A. Rodrigues, Jr., and E. C. Oliveira, “Dirac and Maxwell equations in the Clifford and spin-Clifford bundles,”Int. J. Theor. Phys. 29, 397–412 (1990).

    Google Scholar 

  32. A. Maia, Jr., E. Recami, M. A. Faria-Rosa, and W. A. Rodrigues, Jr., “Magnetic monopoles without strings in the Kähler-Clifford algebra bundle: a geometrical interpretation,”J. Math. Phys. 31, 502–505 (1990).

    Google Scholar 

  33. A. Crumeyrolle,Orthogonal and Symplectic Clifford Algebras, Spinor Structures (Kluwer, Dordrecht, 1990).

    Google Scholar 

  34. L. Sédov,Mécanique des Milieux Continus (Mir, Moscow, 1975).

    Google Scholar 

  35. P. Baekler, F. W. Hehl, and E. W. Mielke, “Nonmetricity and torsion: Facts and fancies in gauge approaches to gravity,” inProceedings 4th Marcel Grossmann Meeting on General Relativity, R. Ruffini, (North-Holland, Amsterdam, 1986), pp. 277–316.

    Google Scholar 

  36. H. Kleinert,Gauge Fields in Condensed Matter, Vol. II (World Scientific, Singapore, 1989).

    Google Scholar 

  37. M. Göckeler and T. Schücker,Differential Geometry, Gauge Theories and Gravity (Cambridge University Press, Cambridge, 1988).

    Google Scholar 

  38. W. Thirring,Classical Field Theory (Springer, New York, 1980).

    Google Scholar 

  39. R. P. Wallner, “Notes on gauge theory and gravitation,”Acta Phys. Aust. 54, 165–189 (1982).

    Google Scholar 

  40. S. Weinberg,Gravitation and Cosmology (Wiley, New York, 1972).

    Google Scholar 

  41. L. P. Grishchuk and A. N. Petrov, “Closed worlds as gravitational fields,”Sov. Astron. Lett. 12, 179–181 (1986).

    Google Scholar 

  42. J. Schwinger,Particles, Sources and Fields (Addison-Wesley, Reading, Massachusetts, 1970).

    Google Scholar 

  43. W. A. Rodrigues, Jr., and Q. A. G. de Souza, “On the nature of the gravitational field,” submitted for publication, 1993.

  44. J. F. Pommaret,Lie Pseudogroups and Mechanics (Gordon & Breach, New York, 1989).

    Google Scholar 

  45. D. Hestenes, “Spinor fields as distortions of space-time,”J. Math. Phys. 8, 1046–1050 (1967).

    Google Scholar 

  46. F. J. Chinea, “A Clifford algebra approach to general relativity,”Gen. Relativ. Gravit. 21, 21–44 (1989).

    Google Scholar 

  47. R. W. Tucker, “A Clifford calculus for physical field theories,” inClifford Algebras and Their Applications in Mathematical Physics, J. S. R. Chisholm and A. K. Common, eds. (Reidel, Dordrecht, 1986), pp. 177–179.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rodrigues, W.A., de Souza, Q.A.G. The Clifford bundle and the nature of the gravitational field. Found Phys 23, 1465–1490 (1993). https://doi.org/10.1007/BF01243942

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01243942

Keywords

Navigation