Skip to main content
Log in

Is every approximate trajectory of some process near an exact trajectory of a nearby process?

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

This paper deals with the problem “Can a noisy orbit be tracked by a real orbit?” In particular, we will study the one-parameter family of tent maps and the one-parameter family of quadratic maps. We writeg μ for eitherf μ orF μ withf μ (x)=μx forx≦1/2 andf μ (x)=μ(1−x) forx≧1/2, andF μ (x)=μx(1−x). For a given μ we will say:g μ permits increased parameter shadowing if for each δ x >0 there exists someδ μ >0 and some δ f >0 such that every δ f -pseudog μ -orbit starting in some invariant interval can be δ x -shadowed by a realg α -orbit with α=μ+δ μ . We show thatg μ typically permits increased parameter shadowing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alekseev, V. M., Jakobson, M. V.: Symbolic dynamics and hyperbolic dynamic systems. Phys. Rep.75, 287–325 (1981)

    Google Scholar 

  2. Bowen, R.: On Axiom A diffeomorphisms. Reg. Conf. Ser. Math.35, Providence, RI: Am. Math. Soc. 1978

    Google Scholar 

  3. Boyarsky, A.: Randomness implies order. J. Math. Anal. Appl.76, 483–497 (1980)

    Google Scholar 

  4. Collet, P., Eckmann, J.-P.: Iterated maps on the interval as dynamical systems. Boston: Birkhäuser 1980

    Google Scholar 

  5. Collet, P., Crutchfield, J. P., Eckmann, J.-P.: Computing the topological entropy of maps. Commun. Math. Phys.88, 257–262 (1983)

    Google Scholar 

  6. Coven, E. M., Kan, I., Yorke, J. A.: Pseudo-orbit shadowing in the family of tent maps. Preprint

  7. Crutchfield, J. P., Farmer, J. D., Huberman, B. A.: Fluctuations and simple chaotic dynamics. Phys. Rep.92, 45–82 (1982)

    Google Scholar 

  8. Crutchfield, J. P., Packard, N. H.: Symbolic dynamics of noisy chaos. Physica7D, 201–223 (1983)

    Google Scholar 

  9. Derrida, B., Gervois, A., Pomeau, Y.: Iterations of endomorphisms on the real axis and representation of numbers. Ann. Inst. Henri Poincare'29, 305–356 (1978)

    Google Scholar 

  10. Derrida, B., Gervois, A., Pomeau, Y.: Universal metric properties of bifurcations of endomorphisms. J. Phys.A12, 269–296 (1979)

    Google Scholar 

  11. Douady, A., Hubbard, J. H.: Itérations des polynômes quadratiques complexes. C. R. Acad. Sci. Paris294, 123–126 (1982)

    Google Scholar 

  12. Eckmann, J.-P.: Roads to turbulence in dissipative dynamical systems. Rev. Mod. Phys.53, 643–654 (1981)

    Google Scholar 

  13. Guckenheimer, J.: Sensitive dependence to initial conditions for one dimensional maps. Commun. Math. Phys.70, 133–160 (1979)

    Google Scholar 

  14. Guckenheimer, J.: Bifurcations of dynamical systems. CIME Lectures Bressanone 1978. Boston: Birkhäuser 1980

    Google Scholar 

  15. Guckenheimer J., Holmes, P.: Nonlinear oscillations, dynamical systems and bifurcation of vectorfields. Applied Mathematical Sciences Vol.42. Berlin, Heidelberg, New York: Springer 1983

    Google Scholar 

  16. Jonker, L.: Periodic orbits and kneading invariants. Proc. Lond. Math. Soc.39, 428–450 (1979)

    Google Scholar 

  17. Jonker, L., Rand, D.: Bifurcations in one dimension. I. Invent. Math.62, 347–365 (1981) II. Invent. Math.63, 1–15 (1981)

    Google Scholar 

  18. Lasota, A., Yorke, J. A.: On the existence of invariant measures for piecewise monotonic transformations. Trans. Am. Math. Soc.186, 481–488 (1973)

    Google Scholar 

  19. Lasota, A., Yorke, J. A.: On the existence of invariant measures for transformations with strictly turbulent trajectories. Bull. Acad. Polon. Sci. Ser. Sci. Math.25, 233–238 (1977)

    Google Scholar 

  20. Li, T.-Y., Yorke, J. A.: Period three implies chaos. Am. Math. Mon.82, 985–992 (1975)

    Google Scholar 

  21. May, R. M.: Biological populations with nonoverlapping generations: Stable points, stable cycles and chaos. Science186, 645–647 (1974)

    Google Scholar 

  22. May, R. M.: Simple mathematical models with very complicated dynamics. Nature261, 459–467 (1976)

    Google Scholar 

  23. Milnor, J., Thurston, W.: On iterated maps of the interval I, II. Preprint Princeton 1977

  24. Milnor, J.: The monotonicity theorem for real quadratic maps. Bonn: Mathematische Arbeitstagung Bonn 1983

    Google Scholar 

  25. Milnor, J.: On the concept of attractor. Commun. Math. Phys.99, 177–195 (1985)

    Google Scholar 

  26. Misiurewicz, M.: Horseshoes for mappings of the interval. Bull. Acad. Polon. Sci. Ser., Sci. Math.27, 167–169 (1979)

    Google Scholar 

  27. Misiurewicz, M., Szlenk, W.: Entropy of piecewise monotone mappings. Stud. Math.67, 45–63 (1980)

    Google Scholar 

  28. Nusse, H. E.: Chaos, yet no chance to get lost. Order and structure in the chaotic dynamical behaviour of one-dimensional noninvertible Axiom A mappings arising in discrete biological models. Thesis Rijksuniversiteit Utrecht 1983

  29. Nusse, H. E. Qualitative analysis of the dynamics and stability properties for Axiom A maps. J. Math. Anal. Appl. (To appear)

  30. Parry, W.: Symbolic dynamics and transformations of the unit interval. Trans. Am. Math. Soc.122, 368–378 (1966)

    Google Scholar 

  31. Ruelle, D.: Small random perturbations of dynamical systems and the definition of attractors. Commun. Math. Phys.82, 137–151 (1981)

    Google Scholar 

  32. Singer, D.: Stable orbits and bifurcations of maps of the interval. SIAM J. Appl. Math.35, 260–267 (1978)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by J. N. Mather

Research supported in part by the Netherlands organization for the advancement of pure research (Z.W.O.) and under grant AFOSR-81-0217

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nusse, H.E., Yorke, J.A. Is every approximate trajectory of some process near an exact trajectory of a nearby process?. Commun.Math. Phys. 114, 363–379 (1988). https://doi.org/10.1007/BF01242136

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01242136

Keywords

Navigation