Advertisement

Communications in Mathematical Physics

, Volume 114, Issue 4, pp 687–698 | Cite as

A boundary value problem for the two dimensional Broadwell model

  • Carlo Cercignani
  • Reinhard Illner
  • Marvin Shinbrot
Article

Abstract

It is shown that a certain boundary value problem for the steady two-dimensional Broadwell model on a rectangle has a solution. The boundary conditions specify the ingoing particle densities on each side of the rectangle.

Keywords

Boundary Condition Neural Network Statistical Physic Complex System Nonlinear Dynamics 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Arthur, M.D., Cercignani, C.: Nonexistence of a steady rarefied supersonic flow in a half-space. Z. Angew. Math. Phys.31, 634 (1980)Google Scholar
  2. 2.
    Bardos, C., Caflisch, R.E., Nicolaenko, B.: The Milne and Kramers problems for the Boltzmann equation of a hard sphere gas. Commun. Pure Appl. Math.39, 322 (1986)Google Scholar
  3. 3.
    Beale, J.T.: Large-time behavior of the Broadwell model of a discrete velocity gas. Commun. Math. Phys.102, 217–235 (1985)Google Scholar
  4. 4.
    Beals, R.: An abstract treatment of some forward-backward problems of transport and scattering. J. Funct. Anal.34, 1 (1979)Google Scholar
  5. 5.
    Cercignani, C.: Mathematical methods in kinetic theory. New York: Plenum Press 1969Google Scholar
  6. 6.
    Cercignani, C.: Theory and application of the Boltzmann equation. New York: Elsevier 1975Google Scholar
  7. 7.
    Cercignani, C.: Elementary solutions of the linearized gas dynamics Boltzmann equation and their application to the slip flow problem. Ann. Phys. (NY)20, 219 (1962)Google Scholar
  8. 8.
    Cercignani, C.: Existence and uniqueness in the large for boundary value problems in kinetic theory. J. Math. Phys.8, 1653–1656 (1967)Google Scholar
  9. 9.
    Cercignani, C.: On the general solution of the steady linearized Boltzmann equation. In: Rarefied gas dynamics. Becker, M., Fiebig, M. (eds.). Porz-Wahn: DFVLR Press 1974Google Scholar
  10. 10.
    Cercignani, C.: Half-space problems in the kinetic theory of gases. In: Trends in applications of pure mathematics to mechanics. Kröner, E., Kirchgässer, K. (eds.), Lecture Notes in Physics, Vol. 249, p. 35. Berlin, Heidelberg, New York: Springer 1986Google Scholar
  11. 11.
    Cercignani, C., Illner, R., Shinbrot, M.: A boundary value problem for discrete velocity models. Duke Math. J. (to appear)Google Scholar
  12. 12.
    Cercignani, C., Illner, R., Pulvirenti, M., Shinbrot, M.: On nonlinear stationary half-space problems in discrete kinetic theory (to appear)Google Scholar
  13. 13.
    Gatignol, R.: Théorie Cinétique des gaz a répartition discréte des vitésses. Lecture Notes in Physics, Vol. 36. Berlin, Heidelberg, New York: Springer 1975Google Scholar
  14. 14.
    Greenberg, W., van der Mee, C.: An abstract approach to evaporation models in rarefied gas dynamics. Z. Angew. Math. Phys.35, 166 (1984)Google Scholar
  15. 15.
    Illner, R.: Global existence results for discrete velocity models of the Boltzmann equation in several dimensions. J.Méc. Théor. Appl.1, 611–622 (1982)Google Scholar
  16. 16.
    Illner, R.: Examples of non-bounded solutions in discrete kinetic theory. J. Méc. Théor. Appl.5, 561–571 (1986)Google Scholar
  17. 17.
    Kaniel, S., Shinbrot, M.: The Boltzmann equation. I. Uniqueness and local existence. Commun. Math. Phys.58, 65–84 (1978)Google Scholar
  18. 18.
    Schaefer, H.: Über die Methode der a priori Schranken. Math. Ann.129, 415–416 (1955)Google Scholar
  19. 19.
    Smart, D.R.: Fixed point theorems. New York: Cambridge University Press 1974Google Scholar

Copyright information

© Springer-Verlag 1988

Authors and Affiliations

  • Carlo Cercignani
    • 1
  • Reinhard Illner
    • 2
  • Marvin Shinbrot
    • 2
  1. 1.Politecnico di MilanoMilanoItaly
  2. 2.University of VictoriaVictoriaCanada

Personalised recommendations