Advertisement

Communications in Mathematical Physics

, Volume 114, Issue 4, pp 645–685 | Cite as

String theory and algebraic geometry of moduli spaces

  • Dirk-Jan Smit
Article

Abstract

It is shown how the algebraic geometry of the moduli space of Riemann surfaces entirely determines the partition function of Polyakov's string theory. This is done by using elements of Arakelov's intersection theory applied to determinants of families of differential operators parametrized by moduli space. As a result we write the partition function in terms of exponentials of Arakelov's Green functions and Faltings' invariant on Riemann surfaces. Generalizing to arithmetic surfaces, i.e. surfaces which are associated to an algebraic number fieldK, we establish a connection between string theory and the infinite primes ofK. As a result we conjecture that the usual partition function is a special case of a new partition function on the moduli space defined overK.

Keywords

Neural Network Statistical Physic Complex System String Theory Partition Function 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ahlfors, L.: Some remarks on Teichmüller's space of Riemann surfaces. Ann. Math.74, 171 (1961)Google Scholar
  2. 2.
    Alvarez, O.: Conformal anomalies and the index theorem. Nucl. Phys. B216, 125 (1983), and in: Vertex operators in mathematics and physics. MSRI. Berlin, Heidelberg, New York: Springer 1985Google Scholar
  3. 3.
    Alvarez-Gaumé, L., Moore, G., Vafa, C.: Theta functions, Modular invariance and strings. Commun. Math. Phys.106, 40 (1986);Google Scholar
  4. 3a.
    Alvarez-Gaumé, L., Nelson, P.: Riemann surfaces and string theory. In: Supersymmetry, supergravity and superstrings '86. Singapore: World Scientific 1986Google Scholar
  5. 4.
    Arakelov, S.: Intersection theory of divisors on an arithmetic surface. Izv. Akad. Nauk.38, 1179 (1974)Google Scholar
  6. 5.
    Baily, W.: On the embedding ofV-manifolds in peojective space. Am. J. Math.79, 403 (1957)Google Scholar
  7. 6.
    Beilinson, A., Manin, Yu.: The Mumford form and Polyakov measure in string theory. Commun. Math. Phys.107, 359 (1986)Google Scholar
  8. 7.
    Belavin, A., Kniznik, V.: Algebraic geometry and the geometry of quantum strings. Phys. Lett.168, 201 (1986); and Complex geometry and theory of quantum strings. Sov. Phys. JETP64 (2), 214 (1986)Google Scholar
  9. 8.
    Belavin, A., Kniznik, V., Morozov, A., Perelomov, A.: Two- and three-loop amplitudes in the bosonic string-theory. ITEP preprint (1986)Google Scholar
  10. 9.
    Belavin, A., Polyakov, A., Zamolochikov, A.B.: Infinite conformal symmetry in two dimensional quantum field theory. Nucl. Phys. B241, 333 (1984)Google Scholar
  11. 10.
    Bers, L.: Finite dimensional Teichmüller spaces and generalizations. Bull. Am. Math. Soc. (NS)5, 131 (1981)Google Scholar
  12. 11.
    Bismut, J., Freed, D.: The analysis of elliptic families: Dirac operators, eta invariants and the holonomy theorem of Witten. Commun. Math. Phys.107, 103 (1986)Google Scholar
  13. 12.
    Bost, J.: Fibrés déterminants, déterminants régularisés et mesures sur les espaces de modules des courbes complexes. In Séminaire N. Bourbaki, no. 676, febr. (1987)Google Scholar
  14. 13.
    Bost, J., Jolicoeur, T.: A holomorphic property and the critical dimension in a string theory from an index theorem. Phys. Lett. B174, 273 (1986)Google Scholar
  15. 14.
    Catenacci, R., Cornalba, M., Martellini, M., Reina, C.: Algebraic geometry and path integrals for closed strings. Phys. Lett.172, 328 (1986)Google Scholar
  16. 15.
    Chinberg, T.: Introduction to Arakelov intersection theory. In: Arithmetic geometry. Cornell, G., Silverman, J. (eds.). Berlin, Heidelberg, New York: Springer 1986Google Scholar
  17. 16.
    Deligne, P., Mumford, D.: The irreducibility of the space of curves of given genus. Publ. I.H.E.S.36, 75 (1969)Google Scholar
  18. 17.
    D'Hoker, E., Phong, D.: Multiloop amplitudes for the bosonic Polyakov string. Nucl. Phys. B269, 205 (1986); and On determinants of Laplacians on Riemann surfaces. Commun. Math. Phys.104, 537 (1986)Google Scholar
  19. 18.
    Elkik, R.: Fonctions de Green, volumes de Faltings application aux surfaces arithmétiques. Séminaire sure les pinceaux arithmétiques, Astérisque 127, Szpiro, L. (ed.) (1985)Google Scholar
  20. 19.
    Edixhoven, B.: Private communication Edixhoven, B., Smit, D.J.: In preparationGoogle Scholar
  21. 20.
    Faltings, G.: Calculus on Arithmetic surfaces. Ann. Math.119, 387 (1984)Google Scholar
  22. 21.
    Faltings, G., Wüstholtz, G. et al.: Rational points, Seminar Bonn/Wuppertal 1983/84 Vieweg, Aspects of Mathematics, Vol. E6, Braunschweig-Wiesbaden 1984Google Scholar
  23. 22.
    Freed, D.: Determinants, torsion and strings. Commun. Math. Phys.107, 483 (1986)Google Scholar
  24. 23.
    Friedan, D.: Introduction to Polyakov's string theory. In: Les Houches 1983, Amsterdam: North-Holland 1984Google Scholar
  25. 24.
    Friedan, D., Shenker, S.: The analytic geometry of two dimensional conformal field theory. Nucl. Phys. B281, 509 (1987)Google Scholar
  26. 25.
    Gomez, C.: Modular invariance and compactification of the moduli space. Phys. Lett.175, 32 (1986)Google Scholar
  27. 26.
    Griffiths, P., Harris, J.: Principles of algebraic geometry, p. 128ff. New York: Wiley 1978Google Scholar
  28. 27.
    Gunning, R.: Lectures on Riemann surfaces. Princeton, NJ: Princeton University Press 1966Google Scholar
  29. 28.
    Harris, J., Mumford, D.: On the Kodaira dimension of curves. Invent. Math.67, 23 (1982)Google Scholar
  30. 29.
    Hartshorne, R.: Algebraic geometry. Berlin, Heidelberg, New York: Springer 1977Google Scholar
  31. 30.
    Koblitz, N.:p-adic analysis and zeta functions. Berlin, Heidelberg, New York: Springer 1977Google Scholar
  32. 31.
    Manin, Yu.: Lectures on theK-functor in algebraic geometry. Russ. Math. Surv.24 (5), 1 (1969)Google Scholar
  33. 32.
    Manin, Yu.: The partition function of the string can be expressed in terms of theta-functions. Phys. Lett. B172, 184 (1986)Google Scholar
  34. 33.
    Masur, H.: The extension of the Weil-Petersson metric to the boundary of Teichmüller space. Duke Math. J.43, 623 (1979)Google Scholar
  35. 34.
    Moore, G., Nelson, P.: Measure for moduli. Nucl. Phys. B266, 58 (1986)Google Scholar
  36. 35.
    Moret-Bailly, L.: Metriques permisses. Seminaire sur les princeaux arithmétiques, Astérisque 127, Szpiro, L. (ed.) (1985)Google Scholar
  37. 36.
    Morozov, A.: Explicit formulae for one, two, three and four loop string amplitudes. Phys. Lett.184, 177 (1987)Google Scholar
  38. 37.
    Mumford, D.: On the stability of projective varieties. L'Ens Math.23, 39 (1977); and Towards an enumerative geometry of the moduli space of curves. In Arithmetic and geometry. Boston: Birkhäuser 1983Google Scholar
  39. 38.
    Polyakov, A.: Quantum geometry of bosonic strings. Phys. Lett.103, 207 (1981); and Quantum geometry for fermionic strings. Phys. Lett.103 B, 211 (1981)Google Scholar
  40. 39.
    Quillen, D.: Determinants of Cauchy Riemann operators over a Riemann surface. Funkt. Anal. Appl.19, 31 (1985)Google Scholar
  41. 40.
    Silverman, J.: The theory of height functions; and: Height and elliptic curves. In: Arithmetic geometry. Cornell, G., Silverman, J. (eds.). Berlin, Heidelberg, New York: Springer 1986Google Scholar
  42. 41.
    Tate, J.: Algorithm for determining the type of a singular fibre in an elliptic pencil in “Modular functions of one variable,” IV. Lecture Notes in Mathematics, Vol. 476. Berlin, Heidelberg, New York: Springer 1975Google Scholar
  43. 42.
    Ueno, K.: Bosonic strings and arithmetic surfaces. Kyoto University preprint, 1986Google Scholar
  44. 43.
    Verlinde, E., Verlinde, H.: Chiral bosonization, determinants and the string partition function. To appear in Nucl. Phys. B288, 357 (1987)Google Scholar
  45. 44.
    Verlinde, H.: Private communicationGoogle Scholar
  46. 45.
    Vojta, P.: A higher dimensional Mordell conjecture. In: Arithmetic geometry. Cornell, G., Silverman, J. (eds.). Berlin, Heidelberg, New York: Springer 1986Google Scholar
  47. 46.
    Wolpert, C.: On the Kähler form of the moduli space of once punctured tori. Comment. Math. Helv.58, 246 (1983)Google Scholar
  48. 47.
    Wolpert, S.: On the Homology of the moduli space of stable curves. Ann. Math.118, 491 (1983)Google Scholar
  49. 48.
    Wolpert, S.: Chern forms and the Riemann tensor for the moduli space of curves. Invent. Math.85, 119 (1986)Google Scholar

Copyright information

© Springer-Verlag 1988

Authors and Affiliations

  • Dirk-Jan Smit
    • 1
  1. 1.Institute for Theoretical PhysicsUtrechtThe Netherlands

Personalised recommendations