Communications in Mathematical Physics

, Volume 114, Issue 4, pp 613–643 | Cite as

Group theoretic approach to the open bosonic string multi-loopS-matrix

  • A. Neveu
  • P. West


The new approach to string scattering proposed by the authors is generalized to include multi-loop contributions. As an example, the planar one-loop contribution, including its integration measure, to the open bosonic stringS-matrix is computed. The external state dependence for any multi-loop contribution is computed and found to be determined by one group theoretic function which is derived.


Neural Network Statistical Physic Complex System Nonlinear Dynamics Theoretic Approach 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Neveu, A., West, P.: Phys. Lett.193, 187 (1987)Google Scholar
  2. 2.
    Koba, Z., Nielsen, H.B.: Nucl. Phys. B10, 633 (1969)Google Scholar
  3. 3.
    Kikkawa, K., Sakita, B., Virasoro, M.A.: Phys. Rev.184, 1701 (1969)Google Scholar
  4. 4.
    For a review, see Alessandrini, V., Amati, D., Le Bellac, M., Olive, D.: Phys. Rep.1, 269 (1971)Google Scholar
  5. 5.
    Hsue, C.S., Sakita, B., Virasoro, M.A.: Phys. Rev. D2, 2857 (1970)Google Scholar
  6. 5a.
    Gervais, J.-L., Sakita, B.: Phys. Rev. D4, 2291 (1971); Nucl. Phys. B34, 477 (1971)Google Scholar
  7. 5b.
    Mandelstam, S.: Nucl. Phys. B64, 205 (1973), B69, 77 (1974)Google Scholar
  8. 5c.
    Polyakov, A.M.: Phys. Lett.103, 207 (1981)Google Scholar
  9. 6.
    Lovelace, C.: Phys. Lett.32, 703 (1970)Google Scholar
  10. 6a.
    Alessandrini, V.: Nuovo Cimento2, 321 (1971)Google Scholar
  11. 6b.
    Alessandrini, V., Amati, D.: Nuovo Cimento4, 793 (1971)Google Scholar
  12. 7.
    Alvarez, O.: Nucl. Phys. B216, 125 (1983)Google Scholar
  13. 8.
    For a review, see Veneziano, G.: Phys. Rep.9, 199 (1974)Google Scholar
  14. 9.
    Neveu, A., West, P.: Phys. Lett.194, 200 (1987)Google Scholar
  15. 10.
    Lovelace, C.: Phys. Lett.32, 495 (1970)Google Scholar
  16. 11.
    Olive, D.: Nuovo Cimento3, 399 (1971)Google Scholar
  17. 12.
    Neveu, A., West, P.: Phys. Lett.179, 235 (1986)Google Scholar
  18. 13.
    Neveu, A., West, P.: Phys. Lett.180, 34 (1986)Google Scholar
  19. 14.
    Higher transcendental functions, Bateman manuscript project. Erdeleyi, A. (ed.). New York: McGraw-Hill 1953Google Scholar
  20. 15.
    Gross, D.J., Neveu, A., Scherk, J., Schwarz, J.H.: Phys. Rev. D2, 692 (1970)Google Scholar
  21. 16.
    Gross, D.J., Schwarz, J.H.: Nucl. Phys. B23, 333 (1970)Google Scholar
  22. 17.
    Bardakçi, K., Halpern, M.B., Shapiro, J.A.: Phys. Rev.185, 1910 (1969)Google Scholar
  23. 17a.
    Amati, D., Bouchiat, C., Gervais, J.-L.: Lett. Nuov. Cimento2, 399 (1969)Google Scholar
  24. 18.
    Brink, L., Olive, D.: Nucl. Phys. B58, 237 (1973)Google Scholar
  25. 19.
    Brink, L., Olive, D.: Nucl. Phys. B56, 256 (1973)Google Scholar
  26. 20.
    Jetzer, P., Lacki, J.: Nucl. Phys. B282, 189 (1987)Google Scholar
  27. 21.
    Mandelstam, S.: Workshop on unified string theories. Green, M., Gross, D. (eds.). Singapore: World Scientific 1985Google Scholar
  28. 22.
    Moore, G.: Phys. Lett.176, 369 (1986)Google Scholar
  29. 23.
    Cremmer, E.: Nucl. Phys. B31, 477 (1971)Google Scholar
  30. 24.
    Reference deletedGoogle Scholar
  31. 25.
    Di Vecchia, P., Nakayama, R., Petersen, J.L., Sciuto, S.: NORDITA preprint 86/15 (1986)Google Scholar
  32. 26.
    Neveu, A., West, P.: Phys. Lett.168, 192 (1986), CERN preprint TH. 4564/86 (1986)Google Scholar
  33. 26a.
    Hata, H., Itoh, K., Kugo, T., Kunitomo, H., Ogawa, K.: Phys. Lett.172, 186 (1986)Google Scholar
  34. 26b.
    Witten, E.: Nucl. Phys. B268, 253 (1986)Google Scholar
  35. 27.
    Frenkel, I., Kac, V.: Invent. Math.62, 23 (1980)Google Scholar
  36. 27a.
    Goddard, P., Olive, D.: Vertex operators in mathematics and physics. Lepowski, J. et al. (eds.). Berlin, Heidelberg, New York: Springer 1985Google Scholar
  37. 28.
    Ford, L.: Automorphic functions. New York: Chelsea 1951Google Scholar
  38. 29.
    Burnside, W.: Proc. Lond. Math. Soc.23, 49 (1891)Google Scholar
  39. 30.
    Fay, J.: Theta functions on Riemann surfaces. In: Lecture Notes in Mathematics. Berlin, Heidelberg, New York: Springer 1973Google Scholar

Copyright information

© Springer-Verlag 1988

Authors and Affiliations

  • A. Neveu
    • 1
  • P. West
    • 1
  1. 1.Theory DivisionCERNGeneva 23Switzerland

Personalised recommendations