Communications in Mathematical Physics

, Volume 114, Issue 4, pp 577–597 | Cite as

On reproducing kernels and quantization of states

  • Anatol Odzijewicz


Quantization of a mechanical system with the phase space a Kähler manifold is studied. It is shown that the calculation of the Feynman path integral for such a system is equivalent to finding the reproducing kernel function. The proposed approach is applied to a scalar massive conformal particle interacting with an external field which is described by deformation of a Hermitian line bundle structure.


Neural Network Manifold Statistical Physic Phase Space Complex System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Atiyah, M.F., Drinfeld, V.G., Hitchin, N.J., Manin, Yu.I.: Construction of instantons. Phys. Lett.65, 185–187 (1978)Google Scholar
  2. 2.
    Bjorken, J.D., Drell, S.D.: Relativistic quantum mechanics. New York: McGraw-Hill (1964)Google Scholar
  3. 3.
    Gawedzki, K.: Fourier-like kernels in geometric quantization. CXXV Dissertationes Mathematicae, Warszawa (1976)Google Scholar
  4. 4.
    Griffiths, P., Harris, J.: Principles of algebraic geometry. New York: Wiley 1978Google Scholar
  5. 5.
    Hua Lo-Keng: Harmonic analysis of functions of several complex variables in the classical domains. Peking: Science Press 1958. Transl. Math. Monlgraph6, Providence, R.I.: Am. Math. Soc. 1963Google Scholar
  6. 6.
    Hurt, N.E.: Geometric quantization in action. Dordrecht: Reidel 1983Google Scholar
  7. 7.
    Jakobsen, H.P., Vergne, M.: Wave and Dirac operators, and representations of the conformal group. J. Funct. Anal.24, 52–106 (1977)Google Scholar
  8. 8.
    Kobayashi, S.: Geometry of bounded domains. Trans. Am. Math. Soc.92, 267–290 (1959)Google Scholar
  9. 9.
    Kostant, B.: Quantization and unitary representation. Lecture Notes in Mathematics, Vol. 170. pp. 87–208. Berlin, Heidelberg, New York: Springer 1970Google Scholar
  10. 10.
    Lisiecki, W., Odzijewicz, A.: Twistor flag spaces as phase spaces of conformal particles. Lett. Math. Phys.3, 325–334 (1979)Google Scholar
  11. 11.
    Odzijewicz, A.: A conformal holomorphic field theory. Commun. Math. Phys.107, 561–575 (1986)Google Scholar
  12. 12.
    Pasternak, Z.: On dependence of the reproducing kernel on the weight of integration (preprint)Google Scholar
  13. 13.
    Penrose, R.: The twistor programme. Rep. Math. Phys.12, 65–76 (1977)Google Scholar
  14. 14.
    Penrose, R., MacCallum, M.A.H.: Twistor theory: an approach to the quantization of fields and space-time. Phys. Rep.6, No. 4, 241–316 (1972)Google Scholar
  15. 15.
    Rühl, W.: Distributions on Minkowski space and their connection with analytic representations of the conformal group. Commun. Math. Phys.27, 53–86 (1972)Google Scholar
  16. 16.
    Simms, D.J.: Geometric quantization of energy levels in the Kepler problem. Conv. di Geom. Simp. e Fis. Mat. INDAM, Rome (1973)Google Scholar
  17. 17.
    Skwarczyński, M.: Biholomorphic invariants related to the Bergman Functions. Dissertationes Math. 173, PWN, Warszawa, 1–64 (1980)Google Scholar
  18. 18.
    Souriau, J.M.: Structure des Systemes dynamiques. Paris: Dunod 1970Google Scholar
  19. 19.
    Shabat, B.V.: Vvedenie v kompleksnyj analiz. Moskva: Nauka 1969Google Scholar
  20. 20.
    Yau, S.-T.: On the Ricci curvature of a compact Kähler manifold and the complex Monge-Ampère equation. I. Commun. Pure Appl. Math.XXXI, 339–411 (1978)Google Scholar
  21. 21.
    Yosida, K.: Functional analysis. Berlin, Heidelberg, New York: Springer 1965Google Scholar

Copyright information

© Springer-Verlag 1988

Authors and Affiliations

  • Anatol Odzijewicz
    • 1
  1. 1.Institute of PhysicsWarsaw University Division in BiałystokLipowaPoland

Personalised recommendations