Advertisement

Communications in Mathematical Physics

, Volume 114, Issue 4, pp 549–552 | Cite as

On the uniqueness of the infinite cluster in the percolation model

  • A. Gandolfi
  • G. Grimmett
  • L. Russo
Article

Abstract

We simplify the recent proof by Aizenman, Kesten and Newman of the uniqueness of the infinite open cluster in the percolation model. Our new proof is more suitable for generalization in the direction of percolation-type processes with dependent site variables.

Keywords

Neural Network Statistical Physic Complex System Nonlinear Dynamics Quantum Computing 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aizenman, M., Kesten, H., Newman, C. M.: Uniqueness of the infinite cluster and continuity of connectivity functions for short and long range percolation. Commun. Math. Phys.111, 505–531 (1987)Google Scholar
  2. 2.
    Coniglio, A.: Shapes, surfaces and interfaces in percolation clusters. In: Physics of finely divided matter. Daoud, M. (ed.). Les Houches Session XLIV 1985 (to appear)Google Scholar
  3. 3.
    Gandolfi, A.: in preparationGoogle Scholar
  4. 4.
    Gandolfi, A., Keane, M., Russo, L.: On the uniqueness of the infinite occupied cluster in dependent two-dimensional site percolation. Preprint 1986Google Scholar
  5. 5.
    Grimmett, G. R.: On the differentiability of the number of clusters per vertex in the percolation model. J. Lond. Math. Soc.23, 372–384 (1981)Google Scholar
  6. 6.
    Harris, T. E.: A lower bound for the critical probability in a certain percolation process. Proc. Camb. Phil. Soc.56, 13–20 (1960)Google Scholar
  7. 7.
    Kesten, H.: Percolation theory for mathematicians. Boston: Birkhäuser 1982Google Scholar
  8. 8.
    Kesten, H.: The incipient infinite cluster in two-dimensional percolation. Probab. Theory Related Fields73, 369–394 (1986)Google Scholar
  9. 9.
    Newman, C. M., Schulman, L. S.: Infinite clusters in percolation models. J. Stat. Phys.26, 613–628 (1981)Google Scholar

Copyright information

© Springer-Verlag 1988

Authors and Affiliations

  • A. Gandolfi
    • 1
  • G. Grimmett
    • 2
  • L. Russo
    • 3
  1. 1.Department of Mathematics and InformaticsDelft University of TechnologyDelftThe Netherlands
  2. 2.School of MathematicsUniversity of BristolEngland
  3. 3.Department of MathematicsUniversity of Rome IIRomeItaly

Personalised recommendations