Skip to main content
Log in

Thermodynamics for the zero-level set of the Brownian bridge

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

The random set of instants where the Brownian bridge vanishes is constructed in terms of a random branching process. The Hausdorff measure supported by this set is shown to be equivalent to the partition function of a special class of disordered systems. This similarity is used to show rigorously the existence of a phase transition for this particular class of disordered systems. Moreover, it is shown that at high temperature the specific free energy has the strong self-averaging property and that at low temperature it has no self-averaging property. The unicity at high-temperature and the existence of many limits at low temperature are established almost surely in the disorder.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Asmussen, S., Hering, H.: Branching processes. Basel: Birkhäuser 1983

    Google Scholar 

  2. Badii, R., Politi, A.: Statistical description of chaotic attractors. J. Stat. Phys.40, 725–750 (1985)

    Google Scholar 

  3. Besicovitch, A. S.: On the fundamental geometrical properties of linearly measurable plane sets, I, II, and III. Math. Ann.98, 422–464 (1927);115, 296–329 (1938);116, 349–357 (1939)

    Google Scholar 

  4. Bricmont, J., Kupiainen, A.-J.: Phase transition in the 3d Random Field Ising Model. Commun. Math. Phys.116, 539–572 (1988)

    Google Scholar 

  5. Chow, Y. S., Teicher, H.: Probability theory. Berlin, Heidelberg, New York: Springer 1978

    Google Scholar 

  6. Chung, K. L.: Excursions in Brownian motion. Arkiv Math.14, 155–177 (1978)

    Google Scholar 

  7. Collet, P., Koukiou, F.: Thermodynamics of the multiplicative chaos. Preprint Université de Lausanne (1989)

  8. Dellacherie, C., Meyer, P.-A.: Probabilitiés et potentiel, vol. 2. Théorie des martingales. Paris: Hermann 1980

    Google Scholar 

  9. Derrida, B.: A generalization of the Random Energy Model which includes correlations between energies. J. Physique-Lett.46, L401-L407 (1985)

    Google Scholar 

  10. Falconer, K. J.: The geometry of fractal sets, Cambridge Tracts in Mathematics vol.85. Cambridge: Cambridge University Press 1985

    Google Scholar 

  11. Falconer, K. J.: Random fractals. Math. Proc. Camb. Phil. Soc.100, 559–582 (1986)

    Google Scholar 

  12. Fröhlich, J., Zegarliński, B.: Spin glasses and other lattice systems with long range interactions. Commun. Math. Phys.170, 665–688 (1989)

    Google Scholar 

  13. Hausdorff, F.: Dimension und äußeres Maß. Math. Ann.79, 157–179 (1919)

    Google Scholar 

  14. Jacod, J., Shiryaev, A. N.: Limit theorems for stochastic processes. Grundlehren der mathematischen Wissenschaften vol.288. Berlin, Heidelberg, New York: Springer 1987

    Google Scholar 

  15. Karatzas, I., Shreve, S. E.: Brownian motion and stochastic calculus. Berlin, Heidelberg, New York: Springer 1987

    Google Scholar 

  16. Koukiou, F.: A random covering interpretation of the Random Energy Model. Preprint Université de Lausanne (1988)

  17. Koukiou, F., Pasche, J., Petritis, D.: The Hausdorff dimension of the two-dimensional Edwards' random walk. J. Phys. A: Math. Gen. (1988)

  18. Le Gall, J.-F.: Sur les temps locaux d'intersection du mouvement Brownien et la méthode de renormalisation de Varadhan, in Séminaire de Probabilités XIX. Lecture Notes in Mathematics vol.1123, pp. 314–331. Berlin, Heidelberg, New York: Springer 1986

    Google Scholar 

  19. Graf, S., Mauldin, R. D., Williams, S. C.: The exact Hausdorff dimension in random recursive constructions. Mem. A.M.S.71. Number 381 (1988)

  20. Lévy, P.: Processus stochastiques et mouvement Brownien. Paris: Gauthier-Villars 1948

    Google Scholar 

  21. Mauldin, R. D., Williams, S. C.: Random recursive constructions: Asymptotic, geometric, and topological properties. Trans. Am. Math. Soc.295, 325–346 (1986)

    Google Scholar 

  22. Mézard, M., Parisi, G., Virasoro, M. A.: Spin glass theory and beyond. Singapore: World Scientific 1988

    Google Scholar 

  23. Rogers, C. A.: Hausdorff measures. Cambridge: Cambridge University Press 1970

    Google Scholar 

  24. Rosen, J.: A representation for the intersection local time of Brownian paths in space. Ann. Probab.13, 145–153 (1985)

    Google Scholar 

  25. Ruelle, D.: A mathematical reformulation of Derrida's REM and GREM. Commun. Math. Phys.108, 225–239 (1987)

    Google Scholar 

  26. Taylor, S. J., Wendell, J. G.: The exact Hausdorff measure of the zero set of stable processes. Z. Wahrscheinlichkeitstheorie Verw. Geb.6, 170–180 (1966)

    Google Scholar 

  27. Varadhan, S. R. S.: Appendix to the course by K. Symanzik. In: Local quantum theory. Jost, R. (ed.). New York: Academic Press 1969

    Google Scholar 

  28. Westwater, J.: On Edwards' model for long polymer chains. Commun. Math. Phys.72, 131–173 (1980);79, 53–73 (1981);84, 459–470 (1982)

    Google Scholar 

  29. Yor, M.: Renormalisation et convergence en loi pour les temps locaux d'intersection du mouvement brownien dansR 3. In: Séminaire de Probabilités XIX. Lecture Notes Mathematics vol.1123, pp. 350–365. Berlin, Heidelberg, New York: Springer 1986

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by J. Fröhlich

Work supported by the Swiss National Science Foundation

Rights and permissions

Reprints and permissions

About this article

Cite this article

Petritis, D. Thermodynamics for the zero-level set of the Brownian bridge. Commun.Math. Phys. 125, 579–595 (1989). https://doi.org/10.1007/BF01228342

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01228342

Keywords

Navigation