Skip to main content
Log in

Small random perturbations of dynamical systems: Exponential loss of memory of the initial condition

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We consider Markov processes arising from small random perturbations of non-chaotic dynamical systems. Under rather general conditions we prove that, with large probability, the distance between two arbitrary paths starting close to a same attractor of the unperturbed system decreases exponentially fast in time. The case of paths starting in different basins of attraction is also considered as well as some applications to the analysis of the invariant measure and to elliptic problems with small parameter in front to the second derivatives. The proof is based on a multiscale analysis of the typical trajectories of the Markov process; this analysis is done using techniques involved in the proof of Anderson localization for disordered quantum systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Jona-Lasinio, G., Martinelli, F., Scoppola, E.: New approach to the semiclassical limit of quantum mechanics. I: Multiple tunneling in one dimension. Commun. Math. Phys.80, 223 (1981)

    Google Scholar 

  2. Cassandro, M., Galves, A., Olivieri, E., Vares, M. E.: Metastable behaviour of stochastic dynamics: A pathwise approach. J. Stat. Phys.35, No 5/6 (1984)

  3. Ruelle, D.: Small random perturbations of dynamical systems and the definition of attractors. Commun. Math. Phys.82, 137 (1981)

    Google Scholar 

  4. Young, L. S.: Stochastic stability of hyperbolic attractors. Eng. Th. Dyn. Syst.6, 311 (1986)

    Google Scholar 

  5. Schaffer, W. M., Ellner, S., Kot, M.: Effects of noise on some dynamical models of ecology. J. Math. Biol.24, 479 (1986)

    Google Scholar 

  6. Ventzel, A., Freidlin, M. I.: On small random perturbation of dynamical systems. Usp. Math. Nauk.25, 3 (1970). Engl. transl. Russ. Math. Surv.25, 1 (1970). See also Fluctuations in dynamical systems under the action of random perturbations. Moskva: Nauka 1979

    Google Scholar 

  7. Kifer, Yu.: On small random perturbations of some smooth dynamical systems. Math. USSR Izvestija8, 1083 (1974)

    Google Scholar 

  8. Gora, P.: Random composing of mappings, small stochastic perturbations and attractors. Z. Wahrscheinlichtstheorie Verw. Geb.69, 137 (1985)

    Google Scholar 

  9. Day, M. V.: On the exponential exist law in the small parameter exist problem. Stochastics Verw.8, 297 (1983)

    Google Scholar 

  10. Galves, A., Olivieri, E., Vares, M. E.: Metastability for a dynamical system subject to a small random perturbation. Ann. Prob. (1987)

  11. Martinelli, F., Olivieri, E., Scoppola, E.: Small random perturbations of finite and infinite dimensional dynamical systems: Unpredictability of exit times, in preparation

  12. Derrida, B.: Dynamical phase transitions in non-symmetric spin glasses. J. Phys. A: Math. Gen.20, L721 (1987)

  13. Kifer, Yu.: Ergodic theory of random transformations. Progress in probability and statistics. Boston: Birkhäuser 1986

    Google Scholar 

  14. Carverhill, A. P.: Flows of stochastic dynamical systems: Ergodic theory. Stochastics14(4), 273 (1985)

    Google Scholar 

  15. Carverhill, A. P., Chappel, M. J., Elworthy, K. D.: Characteristic exponents for stochastic flows. In: Stochastic processes, Mathematics and Physics, Proceedings 1984. Lecture Note in Mathematics, Vol.1158. Berlin, Heidelberg, New York: Springer 1986

    Google Scholar 

  16. Le Jan, Y.: Equilibre statistique pour les produits de diffeomorphismes aleatoires independants. Ann. Inst. H. Poincare43, No 1, 111 (1987)

    Google Scholar 

  17. Fröhlich, J., Martinelli, F., Scoppola, E., Spencer, T.: Constructive proof of localization in the Anderson tight-binding model. Commun. Math. Phys.101, 21 (1985)

    Google Scholar 

  18. Martinelli, F., Scoppola, E.: Introduction to the mathematical theory of Anderson localization. La Rivista del Nuovo Cimento10, serie 3, n. 10 (1987)

  19. Martinelli, F., Scoppola, E.: Random composition of two rational maps: Singularity of the invariant measure. J. Stat. Phys.50, 516, 1021 (1988)

    Google Scholar 

  20. Fröhlich, J., Spencer, T.: Absence of diffusion in the Anderson tight-binding model for large disorder or low energy. Commun. Math. Phys.88, 151 (1983)

    Google Scholar 

  21. Jona-Lasinio, G., Martinelli, F., Scoppola, E.: Tunneling in one dimension: General theory, instabilities, rules of calculation, applications. In: Mathematics + Physics, Lectures on recent results, Vol. II. Streit, L. (ed.) Singapore: World Scientific 1986

    Google Scholar 

  22. Guikhman, I., Skorokhod, A.: Introduction a la theorie des processus aleatoires. Moscou: Editions MIR 1980

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by A. Jaffe

Rights and permissions

Reprints and permissions

About this article

Cite this article

Martinelli, F., Scoppola, E. Small random perturbations of dynamical systems: Exponential loss of memory of the initial condition. Commun.Math. Phys. 120, 25–69 (1988). https://doi.org/10.1007/BF01223205

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01223205

Keywords

Navigation