Advertisement

Communications in Mathematical Physics

, Volume 118, Issue 4, pp 591–596 | Cite as

Counter-examples to the generalized positive action conjecture

  • Claude LeBrun
Article

Abstract

We give examples of complete locally asymptotically flat Riemannian 4-manifolds with zero scalar curvature and negative mass. The generalized positive action conjecture of Hawking and Pope [5] is therefore false.

Keywords

Neural Network Statistical Physic Complex System Nonlinear Dynamics Scalar Curvature 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Burns, D.: Twistors and harmonic maps. Talk in Charlotte, N.C., October 1986Google Scholar
  2. 2.
    Derdzinski, A.: Compos. Math.49, 405–433 (1983)Google Scholar
  3. 3.
    Eguchi, T., Hanson, A.J.: Ann. Phys.120, 82–106 (1979)Google Scholar
  4. 4.
    Griffiths, P., Harris, J.: Principles of algebraic geometry. New York: Wiley InterscienceGoogle Scholar
  5. 5.
    Hawking, C. W., Pope, C. N.: Nucl. Phys.B146, 381–392 (1978)Google Scholar
  6. 6.
    Hitchin, N. J.: Math. Proc. Camb. Phil. Soc.85, 465–476 (1979)Google Scholar
  7. 7.
    Itoh, M.: Compos. Math.51, 265–273 (1984)Google Scholar
  8. 8.
    LeBrun, C.: Proc. Am. Math. Soc.98, 637–640 (1986)Google Scholar
  9. 9.
    Schoen, R., Yau. S.-T.: Phys. Rev. Lett.42, 547–548 (1979)Google Scholar

Copyright information

© Springer-Verlag 1988

Authors and Affiliations

  • Claude LeBrun
    • 1
  1. 1.Department of MathematicsState University of New YorkStory BrookUSA

Personalised recommendations