Advertisement

Communications in Mathematical Physics

, Volume 118, Issue 4, pp 531–567 | Cite as

Asymptotic dynamics, non-critical and critical fluctuations for a geometric long-range interacting model

  • F. Comets
  • Th. Eisele
Article

Abstract

We study the dynamics of geometric spin system on the torus with long-range interaction. As the number of particles goes to infinity, the process converges to a deterministic, dynamical magnetization field that satisfies an Euler equation (law of large numbers). Its stable steady states are related to the limits of the equilibrium measures (Gibbs states) of the finite particle system. A related equation holds for the magnetization densities, for which the property of propagation of chaos also is established. We prove a dynamical central limit theorem with an infinite-dimensional Ornstein-Uhlenbeck process as a limiting fluctuation process. At the critical temperature of a ferromagnetic phase transition, both a tighter quantity scaling and a time scaling is required to obtain convergence to a one-dimensional critical fluctuation process with constant magnetization fields, which has a non-Gaussian invariant distribution. Similarly, at the phase transition to an antiferromagnetic state with frequencyp0, the fluctuation process with critical scaling converges to a two-dimensional critical fluctuation process, which consists of fields with frequencyp0 and has a non-Gaussian invariant distribution on these fields. Finally, we compute the critical fluctuation process in the infinite particle limit at a triple point, where a ferromagnetic and an antiferromagnetic phase transition coincide.

Keywords

Critical Temperature Constant Magnetization Field Stable Steady State Gibbs State Dynamical Magnetization 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Comets, F.: Nucleation for a long range magnetic model. Ann. Inst. H. Poincaré23, 2, 135–178 (1987)Google Scholar
  2. 2.
    Comets, F., Eisele, Th., Schatzman, M.: On secondary bifurcations for some nonlinear convolution equations. Trans. Am. Math. Soc.296, 2, 661–702 (1986)Google Scholar
  3. 3.
    Dawson, D. A.: Critical dynamics and fluctuations for a meanfield model of cooperative behavior. J. Stat. Phys.31, 29–85 (1983)Google Scholar
  4. 4.
    Dawson, D. A., Gārtner, J.: Long-time fluctuations of weakly interacting diffusions, preprintGoogle Scholar
  5. 5.
    Dawson, D. A., Gārtner, J.: Large deviations from the McKean-Vlasov limit for weakly interacting diffusions, preprint 1986Google Scholar
  6. 6.
    Eisele, Th.: Equilibrium and nonequilibrium theory of a geometric long-range spin glass, Ecole d'été de Physique théorique. Les Houches 1984. Osterwaldet, K., Stora, R.: (eds). Amsterdam Oxford, New York: Elsevier Science 1986Google Scholar
  7. 7.
    Eisele, Th., Ellis, R. S.: Symmetry breaking and random waves for magnetic systems on a circle Z. Wahrsch. V. G.63, 297–348 (1983)Google Scholar
  8. 8.
    Ellis, R. S., Monroe, J. L., Newman, C. M.: The GHS and other correlation inequalities for a classe of even ferromagnets. Commun. Math. Phys.46, 167–182 (1976)Google Scholar
  9. 9.
    Ellis, R. S., Newman, C. M., Rosen, J. S.: Limit theorems for sums of dependent random variables occurring in statistical mechanics. Z. Wahrsch. Verw. Geb.51, 153–169 (1980)Google Scholar
  10. 10.
    Fritz, J.: The Euler equation for the stochastic dynamics of a one-dimensional continuous spin system. Preprint 1986Google Scholar
  11. 11.
    Glauber, R. J.: Time-dependent statistics of the Ising model. J. Math. Phys.4, 294 (1963)Google Scholar
  12. 12.
    Hida, T.: Brownian Motion. Berlin, Heidelberg, New York, 1980Google Scholar
  13. 13.
    Holley, R. A., Stroock, D. W.: Generalized Ornstein-Uhlenbeck processes and infinite particle branching Brownian motions. Res. Inst. Math. Sci. Kyoto14, 741–788 (1978)Google Scholar
  14. 14.
    Ikeda, N., Watanabe, S.: Stochastic differential equations and diffusion processes. Amsterdam: North-Holland 1981Google Scholar
  15. 15.
    Ito, K.: Foundations of stochastic differential equations in infinite dimensional spaces. Philadelphia: Soc. Ind. Appl. Math. 1984.Google Scholar
  16. 16.
    Jacod, J.: Théorèmes limite pour les processus, Ecole d'été de probabilités de St Flour XIII-1983. Lecture Notes in Mathematics, Vol. 1117, Berlin, Heidelberg, New York: Springer 1985Google Scholar
  17. 17.
    Kipnis, C.: Processus de champ moyen. Stochastics5, 93–106 (1981)Google Scholar
  18. 18.
    McKean, H. P.: Propagation of chaos for a class of nonlinear parabolic equations, Lect. Ser. Diff. Eq.2, 41–57 New York: Van Nostrand Reinhold 1969Google Scholar
  19. 19.
    McKean, H. P.: Fluctuations in the kinetic theory of gases. Commun. Pure Appl. Math.28, 435–455 (1975)Google Scholar
  20. 20.
    Mitoma, I.: Tightness of probabilities on 567-1([0, 1], 567-2) and 567-3([0, 1], 567-4). Ann. Prob.11, 989–999 (1983)Google Scholar
  21. 21.
    Nagasawa, M., Tanaka, H.: Propagation of chaos for diffusing Particles of two types with singular mean field interaction. Prob. Th. Rel. F.71, 69–83 (1986)Google Scholar
  22. 22.
    Oelschlāger, K.: A martingale approach to the law of large numbers for weakly interacting stochastic processes. Ann. Prob.12, 458–479 (1984)Google Scholar
  23. 23.
    Shiga, T., Tanaka, H.: Central limit theorems for a system of Markovian particles with mean field interactions. Z. Wahrsch. Verw. Geb.69, 439–459 (1985)Google Scholar
  24. 24.
    Strichartz, R. S.: Multipliers on fractional Sobolev Spaces. J. Math. Mech.16, 1031–1060 (1967)Google Scholar
  25. 25.
    Sznitman, A. S.: Nonlinear reflecting dffusion process, and the propagation of chaos and fluctuations associated. J. Funct. Anal.56, 311–336 (1984)Google Scholar
  26. 26.
    Tanaka, H. Histsuda, M.: Central limit theorem for a simple diffusion model of interacting particles. Hiroshima Math. J.11, 415–423 (1981)Google Scholar
  27. 27.
    Spitzer, F.: In: St Flour 73, Lecture Notes in Mathematics, Vol. 390. Berlin, Heidelberg, New York: Springer 1974Google Scholar
  28. 28.
    Meyer, Y.: In Séminarie Bourbaki 1979–1980,n o560 (1980)Google Scholar
  29. 29.
    Bers, L., John, F., Schechter, M.: Partial differential equations. New York: Intersciences 1964Google Scholar

Copyright information

© Springer-Verlag 1988

Authors and Affiliations

  • F. Comets
    • 1
  • Th. Eisele
    • 2
  1. 1.Laboratoire de Stratistique Appliquée UA CNRS 743Université de Paris-SudOrsay CédexFrance
  2. 2.Institut für Angewandte MathematikUniversität HeidelbergHeidelberg 1Germany

Personalised recommendations