Skip to main content
Log in

Scattering theory and dispersion relations for a class of long-range oscillating potentials

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

If a spherically symmetric potential is such that\(\int\limits_r^{ \to \infty } V \left( {r\prime } \right)dr\prime = {\rm O}\left( {exp - \mu r} \right)\), and if an additional regularity condition is imposedr[a sufficient one being thatrV(r) isL 1], the partial wave amplitudes are meromorphic in a strip of width μ in the complex momentum plane, and the full scattering amplitude is analytic inside an ellipse at fixed energy and satisfies fixed momentum transfer\(\left( {\sqrt { - t} } \right)\) dispersion relations for |t|<μ2.

Such a class of potentials includes not only exponentially decreasing potentials but also long-range oscillating potentials such as (1 +r 2)−2 sin (exp μr). In fact the results can partly be extended to a still broader class of potentials with increasing amplitude at infinity. It is argued that these results might lead to a revision of conventional ideas on what is the potential between physical hadrons.

Appendices may be of interest to special functions addicts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Amrein, W. O., Jauch, J. M., Sinha, K. B.: Scattering theory in quantum mechanics, Chapter 11. Reading: Benjamin (1977)

    Google Scholar 

  2. de Alfaro, V., Regge, T.: Potential scattering. Amsterdam: North-Holland (1965)

    Google Scholar 

  3. Newton, R. G.: Scattering theory of waves and particles. New York: McGraw-Hill (1966)

    Google Scholar 

  4. Khuri, N. N.: Phys. Rev.107, 1148 (1957)

    Google Scholar 

  5. Baeteman, M. L., Chadan, K.: Ann. Inst. Henri Poincaré. AXXIVA, 1 (1976)

  6. Matveev, V. B.: English Translation; Theoreticheskaya i Matematicheskaya Fizika15, 574 (1974). This paper contains reference to earlier works

    Google Scholar 

  7. Abramowitz, M., Stegun, I. A.: Handbook of mathematical functions. New York: Dover Publications (1972)

    Google Scholar 

  8. Chadan, K., Martin, A.: Commun. Math. Phys.53, 221 (1977)

    Google Scholar 

  9. Levey, B. R., Keller, J. B.: J. Math. Phys.4, 54 (1963)

    Google Scholar 

  10. Martin, A.: Nuovo Cimento31, 1229 (1964); and Lecture Notes at the University of Washington, Department of Physics (1964). Unpublished

    Google Scholar 

  11. See, for instance, Erdelyi, A., et al.: (Bateman Project), Tables of integral transforms, Vol. 1, p. 183. New York: McGraw-Hill (1954)

    Google Scholar 

  12. Martin, A.: Nuovo Cimento48, 92 (1967)

    Google Scholar 

  13. Sommer, G.: Nuovo Cimento48, 92 (1967)

    Google Scholar 

  14. Martin, A., Targonsky, G. Y.: Nuovo Cimento70, 1182 (1961)

    Google Scholar 

  15. See, for instance, Magnus, W., Oberettinger, F.: Formulas for mathematical physics, p. 25. New York: Chelsea Publishing Company (1954)

    Google Scholar 

  16. Watson, G. N.: Bessel functions, pp. 260, 448. 2nd ed. Cambridge: Cambridge University Press (1944)

    Google Scholar 

  17. Olver, F. J. M.: Tables for Bessel functions. Mathematical tables Vol. 6. London: National Physical Laboratory (1962)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by J. Ginibre

Dedicated to Nick Khuri

Laboratoire associé au C.N.R.S.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chadan, K., Martin, A. Scattering theory and dispersion relations for a class of long-range oscillating potentials. Commun.Math. Phys. 70, 1–27 (1979). https://doi.org/10.1007/BF01220499

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01220499

Keywords

Navigation