Advertisement

Communications in Mathematical Physics

, Volume 101, Issue 2, pp 247–282 | Cite as

Renormalization theory in four dimensional scalar fields (II)

  • G. Gallavotti
  • F. Nicolò
Article

Abstract

We interpret the results of the preceding paper (I) in terms of partial resummations of the perturbative series for the effective interaction. As an application we sketch how our resummation method leads to a simple summation rule leading to a convergent expansion for the Schwinger functions of the planarΦ 4 4 -theory.

Keywords

Neural Network Statistical Physic Complex System Nonlinear Dynamics Scalar Field 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Gallavotti, G.: Memorie dell'Accademia dei LinceiXV, 23 (1978); Ann. Mat. Pura, Appl.CXX, 1–23 (1979)Google Scholar
  2. 1a.
    Benfatto, G., Cassandro, M., Gallavotti, G., Nicolò, F., Olivieri, E., Presutti, E., Scacciatelli, E.: Some probabilistic techniques in field theory. Commun. Math. Phys.59, 143 (1978); Ultraviolet stability in Euclidean scalar field theories. Commun. Math. Phys.71, 95 (1980)Google Scholar
  3. 2.
    Gawedzki, K., Kupiainen, A.: A rigorous block spin approach to massless lattice theories. Commun. Math. Phys.77, 31 (1980); Renormalization group study of a critical lattice model. I. Convergence to the line of fixed points. Commun. Math. Phys.82, 407 (1981); and II. The correlation functions. Commun. Math. Phys.83, 469 (1982)Google Scholar
  4. 3.
    Bałaban, T.: The ultraviolet stability-bounds for some latticeσ-models and lattice Higgs-Kibble model. Proc. of the Internat. Conf. on Math. Phys., Lausanne 1979. Lecture Notes in Physics. Berlin, Heidelberg, New York: Springer 1980Google Scholar
  5. 4.
    Benfatto, G., Gallavotti, G., Nicolò, F.: On the massive sine-Gordon equation in the first few regions of collapse. Commun. Math. Phys.83, 387 (1982)Google Scholar
  6. 4a.
    Nicolò, F.: On the massive sine-Gordon equation in the higher regions of collapse. Commun. Math. Phys.88, 581 (1983)Google Scholar
  7. 5.
    Hepp, K.: Proof of the Bogoliubov-Parasiuk theorem on renormalization. Commun. Math. Phys.2, 301 (1966)Google Scholar
  8. 6.
    de Calan, C., Rivasseau, V.: Local existence of the Borel transform in EuclideanΦ 44. Commun. Math. Phys.82, 69 (1981)Google Scholar
  9. 7.
    Polchinski, J.: Renormalization and effective Lagrangians. Nucl. Phys. B231, 269 (1984)Google Scholar
  10. 8.
    Nelson, E.: In: Constructive quantum field theory. Lecture Notes in Physics. Berlin, Heidelberg, New York: Springer 1973Google Scholar
  11. 9.
    Gallavotti, G., Rivasseau, V.:Φ 4 field theory in dimension 4: A modern introduction to its unsolved problems. Ann. Inst. Henri Poincaré40 (2), 185 (1984)Google Scholar
  12. 10.
    Colella, P., Lanford, O.: Sample fields and behaviour for the free Markov random fields. In: Constructive quantum field theory. Lecture Notes in Physics. Berlin, Heidelberg, New York: Springer 1973Google Scholar
  13. 10a.
    Benfatto, G., Gallavotti, G., Nicolò, F.: J. Funct. Anal.36 (3), 343 (1980)Google Scholar
  14. 11.
    Glimm, J.: Boson fields with the:Φ 4: interaction in three dimensions. Commun. Math. Phys.10, 1 (1968)Google Scholar
  15. 11a.
    Glimm, J., Jaffe, A.: Positivity of theϕ 34 Hamiltonian. Fortschr. Phys.21, 327 (1973)Google Scholar
  16. 12.
    Fröhlich, J.: On the triviality ofλϕ d4 theories and the approach to the critical point in\(d\mathop > \limits_{(---)} 4\) dimensions. Nucl. Phys. B200, (FS4), 281 (1982)Google Scholar
  17. 12a.
    Aizenman, M.: Proof of the triviality ofϕ d4 field theory and some mean-field features of Ising models ford>4. Phys. Rev. Lett.47, 1 (1981); Geometric analysis ofΦ 4 fields and Ising models. Parts I and II. Commun. Math. Phys.86, 1 (1982)Google Scholar
  18. 13.
    Rivasseau, V.: Construction and Borel summability of planar 4-dimensional Euclidean field theory. Commun. Math. Phys.95, 445 (1984)Google Scholar
  19. 13a.
    't Hooft, G.: On the convergence of planar diagram expansion. Commun. Math. Phys.86, 449 (1982); Rigorous construction of planar diagram field theories in four dimensional Euclidean space. Commun. Math. Phys.88, 1 (1983)Google Scholar
  20. 14.
    Zimmermann, W.: Convergence of Bogoliubov's method for renormalization in momentum space. Commun. Math. Phys.15, 208 (1969)Google Scholar
  21. 15.
    Gallavotti, G.: Renormalization theory and ultraviolet stability for scalar fields via renormalization group methods, Preprint 1984, II University of RomeGoogle Scholar

Copyright information

© Springer-Verlag 1985

Authors and Affiliations

  • G. Gallavotti
    • 1
    • 2
  • F. Nicolò
    • 1
    • 3
  1. 1.Mathematics Department, Hill CenterRutgers UniversityNew BrunswickUSA
  2. 2.Dipartimento di matematicaII Università di RomaRomaItaly
  3. 3.Dipartimento di fisicaUniversità degli studi di Roma “La Sapienza”RomaItaly

Personalised recommendations