Skip to main content
Log in

p-adic quantum mechanics

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

An extension of the formalism of quantum mechanics to the case where the canonical variables are valued in a field ofp-adic numbers is considered. In particular the free particle and the harmonic oscillator are considered. In classicalp-adic mechanics we consider time as ap-adic variable and coordinates and momentum orp-adic or real. For the case ofp-adic coordinates and momentum quantum mechanics with complex amplitudes is constructed. It is shown that the Weyl representation is an adequate formulation in this case. For harmonic oscillator the evolution operator is constructed in an explicit form. For primesp of the form 4l+1 generalized vacuum states are constructed. The spectra of the evolution operator have been investigated. Thep-adic quantum mechanics is also formulated by means of probability measures over the space of generalized functions. This theory obeys an unusual property: the propagator of a massive particle has power decay at infinity, but no exponential one.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Vladimirov, V.S., Volovich, I.V.: Superanalysis, Differential calculus. Theor. Math. Phys.59, 3–27 (1984)

    Google Scholar 

  2. Volovich, I.V.:p-adic space-time and string theory. Theor. Math. Phys.71, 337–340 (1987)

    Google Scholar 

  3. Volovich, I.V.:p-adic string. Class. Quant. Grav.4, L83-L87 (1987)

    Google Scholar 

  4. Volovich, I.V.: Number theory as the ultimate physical theory. Preprint CERN-TH. 4981/87

  5. Grossman, B.:p-adic strings, the Weyl conjectures and anomalies. Phys. Lett. B197, 101–106 (1987)

    Google Scholar 

  6. Freund, P.G.O., Olson, M.: Non-archimedean strings. Phys. Lett. B199, 186–190 (1987)

    Google Scholar 

  7. Freund, P.G.O., Witten, E.: Adelic string amplitudes. Phys. Lett. B199, 191–195 (1987)

    Google Scholar 

  8. Volovich, I.V.: Harmonic analysis andp-adic strings. Lett. Math. Phys.16, 61–67 (1988)

    Google Scholar 

  9. Aref'eva, I. Ya., Dragovič, B., Volovich, I.V.: On thep-adic summability of the anharmonic oscillator. Phys. Lett. B200, 512–514 (1988)

    Google Scholar 

  10. Gervais, J.-L.:p-adic analyticity and Virasoro algebras for conformal theories in more than two dimensions. Phys. Lett. B201, 306–310 (1988)

    Google Scholar 

  11. Frampton, P.H., Okada, Y.:p-adic stringN-point function. Phys. Lett.60, 484–486 (1988)

    Google Scholar 

  12. Marinari, E., Parisi, G.: On thep-adic five point function. Preprint ROM2F-87/38

  13. Freund, P.G.O., Olson, M.:p-adic dynamical systems. Nucl. Phys. B297, 86–97 (1988)

    Google Scholar 

  14. Aref'eva, I. Ya., Dragovič, B., Volovich, I.V.: On the adelic string amplitudes. Phys. Lett. B209, 445–450 (1988)

    Google Scholar 

  15. Frampton, P.H., Okada, Y.: Effective scalar field theory ofp-adic string. Phys. Rev. D (to appear)

  16. Grossman, B.: Adelic conformal field theory. Preprint Rockefeller University DOE/ER/40325-16

  17. Meurice, Y.: The classical harmonic oscillator on Galois andp-adic fields, preprint ANL-HEP-PR-87-114

  18. Borevich, Z.I., Shafarevich, I.R.: Number theory. New York: Academic Press 1966

    Google Scholar 

  19. Gelfand, I.M., Graev, M.I., Pjatetski-Shapiro, I.I.: Theory of representations and automorphic functions. Moscow: Nauka 1966

    Google Scholar 

  20. Vladimirov, V.S.: Distributions over the field ofp-adic numbers. Usp. Math. Nauk43, 17–53 (1988)

    Google Scholar 

  21. Koblitz, N.:p-adic numbers,p-adic analysis, and zeta-functions. Berlin, Heidelberg, New York: Springer 1984

    Google Scholar 

  22. Dwork, B.: Lectures onp-adic differential equations. Berlin, Heidelberg, New York: Springer 1982

    Google Scholar 

  23. Vinogradov, I.M.: Elements of Number theory. Moscow: Nauka 1965

    Google Scholar 

  24. Weyl, H.: The theory of groups and quantum mechanics. New York: Dover 1931

    Google Scholar 

  25. Karasev, M.V., Maslov, V.P.: Asymptotic and geometric quantization. Usp. Math. Nauk.39, 115–173 (1984)

    Google Scholar 

  26. Weil, A.: Sur certains groupes d'operateurs unitaries. Acta Math.111, 143–211 (1964)

    Google Scholar 

  27. Manin, Yu. I.: Non-Archimedean integration andp-adicL-functions of Jacquet and Lenglands. Usp. Math. Nauk.31, 5–54 (1976)

    Google Scholar 

  28. Feynman, R.P., Hibbs, A.R.: Quantum mechanics and path integrals. New York: McGraw-Hill 1965

    Google Scholar 

  29. Maslov, V.P.: Operator methods. Moscow: Nauka 1973

    Google Scholar 

  30. Glimm, J., Jaffe, A.: Quantum physics. A functional integral point of view. Berlin, Heidelberg, New York: Springer 1987

    Google Scholar 

  31. Vladimirov, V.S., Volovich, I.V.: Vacuum state inp-adic quantum mechanics. Phys. Lett. B217, 411–415 (1989)

    Google Scholar 

  32. Vladimirov, V.S., Volovich, I.V.:p-adic Schrödinger type equation, Preprint NBI-HE-87-77 (1988)

  33. Zelenov, E.I.:p-adic quantum mechanics forp=2. Theor. Math. Phys. (to appear)

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by A. Jaffe

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vladimirov, V.S., Volovich, I.V. p-adic quantum mechanics. Commun.Math. Phys. 123, 659–676 (1989). https://doi.org/10.1007/BF01218590

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01218590

Keywords

Navigation