Skip to main content
Log in

An instanton-invariant for 3-manifolds

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

To an oriented closed 3-dimensional manifoldM withH 1(M, ℤ)=0, we assign a ℤ8-graded homology groupI *(M) whose Euler characteristic is twice Casson's invariant. The definition uses a construction on the space of instantons onM×ℝ.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adams, R.A.: Sobolev spaces. New York: Academic Press 1975

    Google Scholar 

  2. Arondzajn, N.: A unique continuation theorem for solutions of elliptic partial differential equations or inequalities of the second order. J. Math. Pures Appl.36 (9), 235–249 (1957)

    Google Scholar 

  3. Atiyah, M.F.: Instantons in two and four dimensions. Commun. Math. Phys.93, 437–451 (1984)

    Google Scholar 

  4. Atiyah, M.F.: New invariants for 3- and 4-dimensional manifolds. Preprint 1987

  5. Atiyah, M.F., Drinfield, V., Hitchin, N., Manin, Y.I.: Construction of instantons. Phys. Lett. A65, 185 (1978)

    Google Scholar 

  6. Atiyah, M.F., Singer, I.M.: The index of elliptic operators I. Ann. Math.87, 484–530 (1968); III. Ibid.87, 546–604 (1968)

    Google Scholar 

  7. Atiyah, M.F.: Index theory of skew adjoint Fredholm operators. Publ. Math. IHES37, 305–325 (1969)

    Google Scholar 

  8. Braam, P.: Monopoles on three-manifolds, preprint, Oxford, 1987

  9. Donaldson, S.K.: An application of gauge theory to the topology of 4-manifolds. J. Differ. Geom.18, 269–316 (1983)

    Google Scholar 

  10. Donaldson, S.K.: Instantons and geometric invariant theory

  11. Donaldson, S.K.: The orientation of Yang-Mills moduli-spaces and four manifold topology. J. Differ. Geom.26, 397–428 (1987)

    Google Scholar 

  12. Donaldson, S.K.: Polynomial invariants for smooth 4-manifolds. Preprint, Oxford, 1987

  13. Fintushel, R., Stern, R.J.: Pseudofree orbifolds. Ann. Math.122, 335–346 (1985)

    Google Scholar 

  14. Floer, A.: Morse theory for Lagrangian intersections. J. Differ. Geom. (to appear)

  15. Floer, A.: The unregularized gradient flow for the symplectic action. Commun. Pure Appl. Math. (to appear)

  16. Floer, A.: Symplectic fixed points and holomorphic spheres. Preprint, CIMS, 1988

  17. Freed, D., Uhlenbeck, K.K.: Instantons and four-manifolds. Berlin, Heidelberg, New York: Springer 1984

    Google Scholar 

  18. Goldman, W.: The symplectic nature of the fundamental groups of surfaces. Adv. Math.54, 200–225 (1984)

    Google Scholar 

  19. Hempel, J.: Three-manifolds. Ann. of Math. Studies 86. Princeton, NJ: Princeton, University Press 1967

    Google Scholar 

  20. Hörmander, L.: The analysis of linear differential operators. III. Berlin, Heidelberg, New York: Springer 1985

    Google Scholar 

  21. Husemoller, D.: Fibre bundles. Springer Graduate Texts in Math., Vol. 20. Berlin, Heidelberg, New York: Springer 1966

    Google Scholar 

  22. Kondrat'ev, V.A.: Boundary value problems for elliptic equations in domains with conical or angular points. Trans. Moscow Math. Soc.16 (1967)

  23. Lockhard, R.B., McOwen, R.C.: Elliptic operators on noncompact manifolds. Ann. Sci. Norm. Sup. PisaIV-12, 409–446 (1985)

    Google Scholar 

  24. Matic, G.: SO(3) connections and rational homology cobordism. Preprint, MIT, 1987

  25. Maz'ja, V.G., Plamenevski, B.A.: Estimates onL p and Hölder classes and the Miranda-Agmon maximum principle for solutions of elliptic boundary problems in domains with singular points on the boundary. Math. Nachr.81, 25–82 (1978) [English Transl. In: AMS Translations Ser. 2,123, 1–56 (1984)

    Google Scholar 

  26. Milnor, J.: Lectures on theh-cobordism theorem. Math. Notes. Princeton, NJ: Princeton University Press 1965

    Google Scholar 

  27. Novikov, S.P.: Multivalued functions and functionals, an analogue of Morse theory. Sov. Math. Dokl.24, 222–226 (1981)

    Google Scholar 

  28. Palais, R.S.: Foundations of global analysis. New York: Benjamin 1968

    Google Scholar 

  29. Quinn, F.: Transversal approximation on Banach manifolds. In: Proc. Symp. Pure Math. 15. Providence, RI: AMS 1970

    Google Scholar 

  30. Ray, D.B., Singer, I.M.:R-torsion and the Laplacian on Riemannian manifolds. Adv. Math.7, 145–201 (1971)

    Google Scholar 

  31. Smale, S.: Morse inequalities for dynamical systems. Bull. AMS66, 43–49 (1960)

    Google Scholar 

  32. Smale, S.: On gradient dynamical systems. Ann. Math.74, 199–206 (1961)

    Google Scholar 

  33. Smale, S.: An infinite dimensional version of Sard's theorem. Am. J. Math.87, 213–221 (1973)

    Google Scholar 

  34. Spanier, E.: Algebraic topology. New York: McGraw-Hill 1966

    Google Scholar 

  35. Taubes, C.H.: Self-dual Yang-Mills connections on non-self-dual 4-manifolds. J. Differ. Geom.17, 139–170 (1982)

    Google Scholar 

  36. Taubes, C.H.: Gauge theory on asymptotically periodic 4-manifolds. J. Differ. Geom.25, 363–430 (1987)

    Google Scholar 

  37. Taubes, C.H.: Private communication

  38. Taubes, C.H.: A framework for Morse theory for the Yang-Mills functional. Preprint, Harvard, 1986

  39. Taubes, C.H.: Preprint, 1987

  40. Uhlenbeck, K.K.: Removable singularities in Yang-Mills fields. Commun. Math. Phys.83, 11–29 (1982)

    Google Scholar 

  41. Uhlenbeck, K.K.: Connections withL p-bounds on curvature. Commun. Math. Phys.83, 31–42 (1982)

    Google Scholar 

  42. Witten, E.: Supersymmetry and Morse theory. J. Differ. Geom.17, 661–692 (1982)

    Google Scholar 

  43. Witten, E.: Topological quantum field theory. Commun. Math. Phys.117, 353–386 (1988)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by A. Jaffe

Rights and permissions

Reprints and permissions

About this article

Cite this article

Floer, A. An instanton-invariant for 3-manifolds. Commun.Math. Phys. 118, 215–240 (1988). https://doi.org/10.1007/BF01218578

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01218578

Keywords

Navigation