Skip to main content
Log in

Exactly soluble diffeomorphism invariant theories

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

A class of diffeomorphism invariant theories is described for which the Hilbert space of quantum states can be explicitly constructed. These theories can be formulated in any dimension and include Witten's solution to 2+1 dimensional gravity as a special case. Higher dimensional generalizations exist which start with an action similar to the Einstein action inn dimensions. Many of these theories do not involve a spacetime metric and provide examples of topological quantum field theories. One is a version of Yang-Mills theory in which the only quantum states onS 3×R are the θ vacua. Finally it is shown that the three dimensional Chern-Simons theory (which Witten has shown is intimately connected with knot theory) arises naturally from a four dimensional topological gauge theory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Witten, E.: Nucl. Phys.B311, 46 (1988)

    Google Scholar 

  2. Atiyah, M.: New invariants of three and four dimensional manifolds, to appear in the Symposium on the Mathematical Heritage of Hermann Weyl. Wells, R. et. al., (eds.). (Univ. of North Carolina, May 1987)

  3. Witten, E.: Commun. Math. Phys.117, 353 (1988)

    Google Scholar 

  4. Witten, E.: Commun. Math. Phys.118, 411 (1988)

    Google Scholar 

  5. Baulieu, L., Grossman, B.: Phys. Lett.B212, 351 (1988); Phys. Lett.B214, 223 (1988); Yamron, J.: Phys. Lett.B213, 325 (1988)

    Google Scholar 

  6. Baulieu, L., Singer, I.: Topological Yang-Mills Symmetry, to appear in the proceedings of Conformal Field Theory and Related Topics (Annecy, France, March 1988); Brooks, R., Montano, D., Sonnenschein, J.: Phys. Lett.B214, 91 (1988)

  7. Labastida, J., Pernici, M.: Phys. Lett.B212, 56 (1988)

    Google Scholar 

  8. Witten, E.: Commun. Math. Phys.121, 351–399 (1989)

    Google Scholar 

  9. Tseytlin, A.: J. Math. Phys.15, L105 (1982)

  10. See e.g. Penrose, R.: In Magic without magic. Klauder, J. (ed.). San Franciscó Freeman 1972

    Google Scholar 

  11. See e.g. De Witt, B.: Phys. Rev.160, 1113 (1967)

    Google Scholar 

  12. Hartle, J., Hawking, S.: Phys. Rev.D28, 2960 (1983); Hartle, J.: In: 13th Texas Symposium on Relativistic Astrophysics. Ulmer M. (ed.). Singapore: World Scientific 1987; Vilenkin, A.: Phys. Rev.D33, 3560 (1986)

    Google Scholar 

  13. Teitelboim, C.: Phys. Lett.B167, 63 (1986)

    Google Scholar 

  14. Taubes, C.: Casson's Invariant and Gauge Theory. Harvard Univ. preprint (1988)

  15. Floer, A.: Commun. Math. Phys.118, 215 (1988)

    Google Scholar 

  16. Isenberg, J., Nester, J.: In: General relativity and gravitation Vol.1, Held, A. (ed.). New York: Plenum Press 1980; Hehl, F., von der Heyde, P., Kerlick, G., Nester, J.: Rev. Mod. Phys.48, 393 (1976)

    Google Scholar 

  17. Hayashi, N., Shirafuji, T.: Phys. Rev.D19, 3524 (1979)

    Google Scholar 

  18. Witten, E.: Phys. Lett.B206, 601 (1988); Labastida, J., Pernici, M.: Phys. Lett.B213, 319 (1988)

    Google Scholar 

  19. Ashtekar, A.: Phys. Rev. Lett.57, 2244 (1986); Phys. Rev.D36, 1587 (1987); New Perspectives in Canonical Gravity. Naples: Bibliopolis 1988

    Google Scholar 

  20. Samuel, J.: Pramana28, L429 (1987); Jacobson, T., Smolin, L.: Phys. Lett.B196, 39 (1987); Class. Quantum Grav.5, 583 (1988)

  21. Rovelli, C., Smolin, L.: Loop space representation of quantum gravity. Rome preprint; Phys. Rev. Lett.61, 1155 (1988)

    Google Scholar 

  22. For a review see Kuchar, K.: In: Quantum gravity 2. Isham, C., Penrose, R., Sciama, D. (eds.). Oxford: Oxford University Press 1981

    Google Scholar 

  23. For a reviews, see Hartle, J.: In: High energy physics. Bowick, M., Gursey, F. (eds.). Singapore: World Scientific 1985; Misner, C.: In: Magic without Magic. Klauder, J. (ed.). San Francisco: Freeman 1972

    Google Scholar 

  24. Schwarz, A.: Lett. Math. Phys.2, 247 (1978)

    Google Scholar 

  25. Horowitz, G., Lykken, J., Rohm, R., Strominger, A.: Phys. Rev. Lett.57, 283 (1986); Hata, H., Itoh, K., Kugo, K., Kunitomo, H., Ogawa, K.: Phys. Lett.B175, 138 (1986)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by S.-T. Yau

On leave from the Department of Physics, University of California, Santa Barbara, CA, USA

Rights and permissions

Reprints and permissions

About this article

Cite this article

Horowitz, G.T. Exactly soluble diffeomorphism invariant theories. Commun. Math. Phys. 125, 417–437 (1989). https://doi.org/10.1007/BF01218410

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01218410

Keywords

Navigation