Communications in Mathematical Physics

, Volume 125, Issue 2, pp 301–335 | Cite as

BRST cohomology of the super-Virasoro Algebras

  • Bong H. Lian
  • Gregg J. Zuckerman


We study the superextension of the semi-infinite cohomology theory of the Virasoro Algebra. In particular, we examine the BRST complex with coefficients in the Fock Space of the RNS superstring. We prove a theorem of vanishing cohomology, and establish the unitary equivalence between a positive definite transversal space, a physical subspace and the zeroth cohomology group. The cohomology of a subcomplex is identified as the covariant equivalent of the well-known GSO subspace. An exceptional case to the vanishing theorem is discussed.


Neural Network Statistical Physic Complex System Nonlinear Dynamics Quantum Computing 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Brower, R. C., Friedman, K. A.: Phys. Rev.D7, 535–539 (1973)Google Scholar
  2. 2.
    Corrigan, E. F., Goddard, P.: Nucl. Phys.B68, 189–202 (1974)Google Scholar
  3. 3.
    Feigin, B. L., Fuks, D. B.: Funct. Anal. Appl.16, 114–126 (1982)Google Scholar
  4. 4.
    Feigin, B. L.: Usp. Mat. Nauk.39, 195–196 (1984) (English translation: Russ. Math. Surv.39, 155–156)Google Scholar
  5. 5.
    Frenkel, I., Garland, H., Zuckerman, G. J.: Proc. Natl. Acad. Sci. USA83, 8446 (1986)Google Scholar
  6. 6.
    Friedan, D., Martinec, E., Shenker, S.: Nucl. Phys.B271, 93–165 (1986)Google Scholar
  7. 7.
    Friedan, D., Qui, Z., Shenker, S.: Phys. Lett.151B, 37–43 (1985)Google Scholar
  8. 8.
    Gliozzi, F., Scherk, J., Olive, D.: Nucl. Phys.B122, 253–190 (1977)Google Scholar
  9. 9.
    Kac, V.: Lecture Notes in Phys. vol.94. Berlin, Heidelberg, New York 1979Google Scholar
  10. 10.
    Kac, V., Wakimoto, M.: Proceedings of the Symposium on Conformal Groups and Structures. Lecture Notes in Phys. Berlin, Heidelberg, New York 1985Google Scholar
  11. 11.
    Kato, M., Ogawa, K.: Nucl. Phys.B212, 443 (1983)Google Scholar
  12. 12.
    Neveu, A., Schwarz, J. H.: Nucl. Phys.B31, 86 (1971)Google Scholar
  13. 13.
    Ohta, N.: Phys. Rev.D33, 681–1691 (1986)Google Scholar
  14. 14.
    Ramond, P.: Phys. Rev.D3, 2415 (1971)Google Scholar
  15. 15.
    Terao, H., Uehara, S.: Phys. Lett.168B, 70–74 (1986)Google Scholar
  16. 16.
    Witten, E.: Nucl. Phys.B276, 291–324 (1986)Google Scholar
  17. 17.
    Zuckerman, G. J.: Yale preprint (1988); to appear in the Proceedings of AMS Conference on Theta Functions, Bowdoin College (1987). Gunning, R., Ehrenpreis, L. (eds.).Google Scholar
  18. 18.
    Hilton, P. J., Stammbach, U.: A course in Homological algebra. Berlin, Heidelberg, New York: Springer 1970, Chap 7Google Scholar
  19. 19.
    Green, M. B., Schwarz, J. H., Witten, E.: Superstring theory, vol. 1, 1987Google Scholar
  20. 20.
    Jacobson, N.: Basic algebra. Volume II, New York: Freeman and Company 1980Google Scholar
  21. 21.
    Dixon, J. A., Taylor, J. C.: Nucl. Phys.B78, 552 (1974)Google Scholar
  22. 22.
    Meurman, A., Rocha, A.: Commun. Math. Phys.107, 263–294 (1986)Google Scholar
  23. 23.
    Leites, D. A.: Funct. Anal. Appl.9, 340–294 (1975)Google Scholar

Copyright information

© Springer-Verlag 1989

Authors and Affiliations

  • Bong H. Lian
    • 1
  • Gregg J. Zuckerman
    • 2
  1. 1.Department of PhysicsYale UniversityNew HavenUSA
  2. 2.Department of MathematicsYale UniversityNew HavenUSA

Personalised recommendations