Communications in Mathematical Physics

, Volume 112, Issue 2, pp 343–383 | Cite as

Soliton quantization in lattice field theories

  • J. Fröhlich
  • P. A. Marchetti


Quantization of solitons in terms of Euclidean region functional integrals is developed, and Osterwalder-Schrader reconstruction is extended to theories with topological solitons. The quantization method is applied to several lattice field theories with solitons, and the particle structure in the soliton sectors of such theories is analyzed. A construction of magnetic monopoles in the four-dimensional, compactU(1)-model, in the QED phase, is indicated as well.


Neural Network Statistical Physic Soliton Field Theory Complex System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Fröhlich, J., Marchetti, P.A.: Magnetic monopoles and charged states in four-dimensional, abelian lattice gauge theories. Europhys. Lett.2, 933–940 (1986)Google Scholar
  2. 2.
    Fröhlich, J.: in, Progress in gauge theory. (Cargèse 1979), G. 't Hooft et al. (eds.). New York: Plenum Press 1980Google Scholar
  3. 3.
    t'Hooft, G.: Nucl. Phys. B138, 1 (1978)Google Scholar
  4. 4.
    Bricmont, J., Fröhlich, J.: Nucl. Phys. B25 [FS13], 517 (1985); Commun. Math. Phys.98, 553 (1985)Google Scholar
  5. 5.
    Marino, E.C., Swieca, J.A.: Nucl. Phys. B170 [FS1], 175 (1980); Marino, E.C., Schroer, B., Swieca, J.A.: Nucl. Phys. B200[FS4], 473 (1982)Google Scholar
  6. 6.
    Borchers, H.J.: Commun. Math. Phys.1, 57 (1965); Buchholz, D., Fredenhagen, K.: Commun. Math. Phys.84, 1 (1982)Google Scholar
  7. 7.
    See e.g.: Solitons and particles, Rebbi, C. et al. (eds.) Singapore: World Scientific 1984Google Scholar
  8. 8.
    Fröhlich, J.: In: Invariant wave equations. Lecture Notes in Physics, Vol.73. Berlin, Heidelberg, New York: Springer 1978Google Scholar
  9. 9.
    Fröhlich, J.: Commun, Math. Phys.47, 269 (1976)Google Scholar
  10. 10.
    See e.g. Kadanoff, L. P., Ceva, H.: Phys. Rev. B11, 3918 (1971); Wegner, F.: J. Math. Phys.12, 2259 (1971); 't Hooft, G.: In [3]; Mack, G., Petkova, V.B.: Ann. Phys.123, 442 (1979);125, 117 (1980); Kogut, J.: In: Recent advances in field theory and statistical mechanics. (Les Houches 1982) Zuber, J.-B. et al. (eds.) Amsterdam: North Holland 1984; Fröhlich, J., Spencer, T.: In: Scaling and self-similarity in physics, PPh 7, Basel, Boston: Birkhäuser 1983Google Scholar
  11. 11.
    Osterwalder, K., Schrader, R.: Commun. Math. Phys.31, 33 (1973),42, 281 (1975); Glaser, V.: Commun. Math. Phys.37, 257 (1974); Fröhlich, J., Ostewalder, E., Seiler, E.: Ann. Math.118, 461 (1981)Google Scholar
  12. 12.
    Seiler, E.: Gauge theories as a problem of constructive quantum field theory and statistical mechanics. Lecture Notes in Physics Vol. 159. Berlin, Heidelberg, New York: Springer 1982Google Scholar
  13. 13.
    Fredenhagen, K., Marcu, M.: Commun. Math. Phys.92, 81 (1983)Google Scholar
  14. 14.
    Wilczek, F.: Phys. Rev. Lett.48, 1144 (1982);49, 957 (1982); Wilczek, F., Zee, A.: Phys. Rev. Lett.51, 2250 (1982); Wu, Y.S.: Phys. Rev. Lett.53, 111 (1984)Google Scholar
  15. 15.
    See e.g. Thouless, D.J., Wu, Y.S.: Phys. Rev. B31, 1191 (1985)Google Scholar
  16. 16.
    Fröhlich, J., Marchetti, P.A.: In preparationGoogle Scholar
  17. 17.
    Marchetti, P.A.: Ph. D. Thesis, S.I.S.S.A. Trieste 1986Google Scholar
  18. 18.
    Marchetti, P.A.: Particle analysis of soliton sectors in massive lattice field theories (in preparation)Google Scholar
  19. 19.
    Kennedy, T., King, C.: Commun. Math. Phys.104, 327 (1986)Google Scholar
  20. 20.
    See e.g. Jackiw, R., Rebbi, C.: Phys. Rev. D13, 3398 (1975), and other papers in [7]Google Scholar
  21. 21.
    Fröhlich, J.: In: Renormalization theory. Erice 1975. Velo, G., Wightman, A.S. (eds.) NATO Advanced Study Institutes Series C23, 1976Google Scholar
  22. 22.
    Fröhlich, J.: In: Current problems in elementary particle and mathematical physics, Schladming 1976. Acta Phys. Austriaca [Suppl.] XV. Berlin, Heidelberg, New York: Springer 1976Google Scholar
  23. 23.
    Marra, R., Miracle-Solé, S.: Commun. Math. Phys.67, 233 (1979)Google Scholar
  24. 24.
    Buchholz, D., Fredenhagen, K.: In [6]Google Scholar
  25. 25.
    Borgs, C., Nill, F.: No Higgs mechanism in scalar lattice Q.E.D. at large electromagnetic coupling. Preprint MPI-PAE/Pth 79/85Google Scholar
  26. 26.
    Buchholz, D.: Commun. Math. Phys.85, 49 (1982)Google Scholar
  27. 27.
    Balaban, T., Brydges, D., Imbrie, J., Jaffe, A.: Ann. Phys.158, 281 (1985); Brydges, D.: In: Critical phenomena, random systems, gauge theories. Osterwalder, K., Story, R. (eds.) (Les Houches 1984). Amsterdam: North Holland 1986Google Scholar
  28. 28.
    Steinmann, O.: Ann. Phys.157, 232 (1984)Google Scholar

Copyright information

© Springer-Verlag 1987

Authors and Affiliations

  • J. Fröhlich
    • 1
  • P. A. Marchetti
    • 2
  1. 1.Theoretical Physics, ETH-HönggerbergZürichSwitzerland
  2. 2.Dipartimento di FisicaUniversità di Padova, I.N.F.N. sez. PadovaPadovaItaly

Personalised recommendations