Advertisement

Communications in Mathematical Physics

, Volume 112, Issue 2, pp 237–282 | Cite as

The evaluation map in field theory, sigma-models and strings I

  • L. Bonora
  • P. Cotta-Ramusino
  • M. Rinaldi
  • J. Stasheff
Article

Abstract

The rôle of the evaluation map in anomaly calculations for field theory, sigma-models and strings is investigated. In this paper, anomalies in field theory (with and without a backgrounds connection), are obtained as pull-backs of suitable forms via evaluation maps. The cohomology of the group of gauge transformations is computed in terms of the cohomology of the base manifold and of the cohomology of the structure group. This allows us to clarify the different “topological significance” of gauge and gravitational anomalies. The relation between “locality” and “universality” is discussed and “local cohomology” is linked to the cohomology of classifying spaces. The problem of combining the locality requirement and the index theorem approach to anomalies is also examined. Anomaly cancellation in field theories derived from superstrings is analyzed and the relevant geometrical constraints are discussed.

Keywords

Neural Network Manifold Field Theory Complex System Nonlinear Dynamics 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bonora, L., Cotta-Ramusino, P., Rinaldi, M., Stasheff, J.: The evaluation map in field theory, sigma models and strings-II, preprint CERN-TH. 4750/87Google Scholar
  2. 2.
    Atiyah, M. F., Singer, I. M.: Dirac operators coupled to vector potentials. Proc-Natl. Acad. Sci.81, 2597 (1984)Google Scholar
  3. 3.
    Quillen, D.: Determinants of Cauchy-Riemann operators over a Riemann surface. Funkts. Anal. Prilozh.19, 37 (1985)Google Scholar
  4. 4.
    Mañes, J., Stora, R., Zumino, B.: Algebraic study of chiral anomalies. Commun. Math. Phys.102, 157 (1985)Google Scholar
  5. 5.
    Bonora, L., Cotta-Ramusino, P.: Some remarks on BRS transformations, anomalies and the cohomology of the Lie algebra of the group of gauge transformations. Commun. Math. Phys.87, 589 (1983)Google Scholar
  6. 6.
    Milnor, J.: Infinite dimensional Lie groups. In: Relativity, groups and topology II. Les Houches 82; Witt B.De, Stora R., (eds.). Amsterdam: North Holland 1984Google Scholar
  7. 7.
    Atiyah, M. F., Bott, R.: Yang-Mills equations over Riemann surfaces. Philos. Trans. R. Soc. Lond. A308, 523 (1982)Google Scholar
  8. 8.
    Trautman, A.: On groups of gauge transformations. In: Geometrical and topological methods in gauge theories. Lecture Notes in Physics, Vol.129. Harnad, J., Shnider, S. (eds.). Berlin, Heidelberg, New York: Springer 1980Google Scholar
  9. 9.
    Kobayashi, S., Nomizu, K.: Foundation of differential geometry, Vols. I, II. New York, London: Inter science 1963, 1969Google Scholar
  10. 10.
    Trautman, A.: On gauge transformations and symmetries. Bull. Acad. Pol. Sci. Phys. Astron.,XXVII-No 1 (1979)Google Scholar
  11. 11.
    Trautman, A.: Geometrical aspects of gauge configurations. Acta Phys. Austriaca [Supp]XXIII, 401 (1981)Google Scholar
  12. 12.
    Lecomte, P.: Homomorphisme de Chern-Weil et automorphismes infinitésimaux des fibrés vectoriels. C. R. Acad. Sci. Paris,T294, Sér A, 369 (1982)Google Scholar
  13. 13.
    Chern, S. S.: Complex manifolds without potential theory. Berlin, Heidelberg, New York: Springer 2nd ed 1979Google Scholar
  14. 14.
    Bourguignon, J. P.: Une stratification de l'espace des structures Riemanniennes. Compos. Mat.30, 1 (1975)Google Scholar
  15. 15.
    Palais, R.: Foundations of global non linear analysis. New York: Benjamin 1968Google Scholar
  16. 16.
    Michor, P. W.: Manifolds of differentiable mappings. Orpington (U.K.): Shiva 1980Google Scholar
  17. 17.
    Mitter, P., Viallet, C.: On the bundle of connections and the gauge orbits manifolds in Yang-Mills theory. Commun. Math. Phys.79, 457 (1981)Google Scholar
  18. 18.
    Omori, H.: Infinite Lie transformation groups. Lecture Notes in Mathematics, Vol.427, Berlin, Heidelberg, New York: Springer 1975Google Scholar
  19. 19.
    Abbati, M. C., Cirelli, R., Maniá, A., Michor, P. W.: Smoothness of the action of gauge transformation group on connections. J. Math. Phys.27, 2469 (1986)Google Scholar
  20. 20.
    Stora, R.: Algebraic structure and topological origin of anomalies. In: Progress in gauge fields theory. Hooft, G.'t, Jaffe, A., Lehmann, H., Mitter, P. K., Singer, I. M., Stora, R. (eds.). New York: Plenum Press 1984Google Scholar
  21. 21.
    Bardeen, W., Zumino, B.: Consistent and covariant anomalies in gauge and gravitational theories. Nucl. Phys.B244, 421 (1984)Google Scholar
  22. 22.
    Bonora, L., Cotta-Ramusino, P.: ABJ anomalies and superfield formalism in gauge theories. Phys. Lett.B107, 87 (1981)Google Scholar
  23. 23.
    Stasheff, J.: The De Rham bar construction as a setting for the Zumino, Fadde'ev, etc. descent equation. In: Proc. of the symposium on anomalies, geometry and topology. Bardeen, W., White, A. (eds.). Singapore: World Scientific 1985Google Scholar
  24. 24.
    Bonora, L., Cotta-Ramusino, P.: Consistent and covariant anomalies and local cohomology. Phys. Rev.D33, 3055 (1986)Google Scholar
  25. 25.
    Greub, W., Halperin, S., Vanstone, R.: Connections, curvature and cohomology, Vol. II. New York London: Academic Press 1973Google Scholar
  26. 26.
    Dieudonné, J.: Éléments d'analyse, Vol.1–9, Paris: Gauthier-VillarsGoogle Scholar
  27. 27.
    Langouche, F., Schücker, T., Stora, R.: Gravitational anomalies of the Adler-Bardeen type, Phys. Lett.145B, 342 (1984)Google Scholar
  28. 28.
    Bott, R., Tu, L.: Differential forms in algebraic topology. Berlin, Heidelberg, New York: Springer 1982Google Scholar
  29. 29.
    Sullivan, D.: Infinitesimal calculations in topology. Publ. Math. I.H.E.S.47, 269 (1977)Google Scholar
  30. 30.
    Haefliger, A.: Rational homotopy of the space of sections of a nilpotent bundle. Trans. Am. Math. Soc.273, 609 (1982)Google Scholar
  31. 31.
    Narasimhan, M., Ramanan, S.: Existence of universal connections Am. J. Math.83, 563 (1961),85, 223 (1963)Google Scholar
  32. 32.
    Dubois-Violette, M., Talon, M., Viallet, C. M.: B.R.S. algebras. Analysis of the consistency equations in gauge theories. Commun. Math. Phys.102, 105 (1985)Google Scholar
  33. 33.
    Peetre, J.: Une caractérisation abstraite des opérateurs differentiels. Math. Scand.7, 211 (1959),8, 116 (1960)Google Scholar
  34. 34.
    De Wilde, M., Lecomte, P.: Cohomology of the Lie-algebra of smooth vector fields of a manifold associated to the Lie derivative of smooth forms. J. Math. Pures Appl.62, 197 (1983)Google Scholar
  35. 35.
    Flato, M., Lichnerowitz, A.: Cohomologie des représentations définies par la dérivation de Lie á valeurs dans les forms, de l'algèbre de Lie des champs de vecteurs d'une variété différentiable. C. R. Acad. Sci.,T291, sér, A, 331 (1980)Google Scholar
  36. 36.
    Husemoller, D.: Fibre bundles, Berlin, Heidelberg, New York: Springer Verlag, 2nd ed (1979)Google Scholar
  37. 37.
    Alvarez, O., Singer, I. M., Zumino, B.: Gravitational anomalies and the family's index theorem. Commun. Math. Phys.96, 409 (1984)Google Scholar
  38. 38.
    Singer, I. M.: Families of Dirac operators with applications to physics. Séminaire Elie Cartan, Astérisque; to be publishedGoogle Scholar
  39. 39.
    Reiman, A. G., Semyonov-Tjan-Shansky, M. A., Faddeev, L. D.: Quantum anomalies and cycles of the gauge group. J. Funct. Anal. Appl. (in Russian) (1984)Google Scholar
  40. 40.
    Shlafly, R.: Universal connections. Invent. Math.59, 59 (1980)Google Scholar
  41. 41.
    Palais, R.: Seminar on the Atiyah index theorem. Princeton N.J., Princeton University Press 1965Google Scholar
  42. 42.
    Atiyah, M. F., Singer, I. M.: The index of elliptic operators I, III, IV. Ann. Math.87, 484 (1968);87, 546;92, 119 (1970)Google Scholar
  43. 43.
    Dabrowski, L., Percacci, R.: Spinors and diffeomorphisms. Commun. Math. Phys.106, 691 (1986)Google Scholar
  44. 44.
    Alvarez-Gaumé, L., Witten, E.: Gravitational anomalies. Nucl. Phys.B234, 269 (1984)Google Scholar
  45. 45.
    Green, M., Schwarz, J.: Anomaly cancellation is supersymmetric D = 10 gauge theory and superstrings. Phys. Lett.149B, 117 (1984)Google Scholar
  46. 46.
    Candelas, P., Horowitz, G., Strominger, A., Witten, E.: Vacuum configurations for superstrings. Nucl. Phys.B258, 46 (1985)Google Scholar
  47. 47.
    Chapline, G. F., Manton, N. S.: Unification of Yang-Mills theory and supergravity in ten dimensions. Phys. Lett.120B, 105 (1983)Google Scholar
  48. 48.
    Bonora, L., Cotta-Ramusino, P.: Some remarks on anomaly cancellation in field theories derived from superstrings. Phys. Lett.169B, 187 (1986)Google Scholar
  49. 49.
    Asorey, M., Mitter, P. K.: Cohomology of the Yang-Mills gauge orbit space and dimensional reduction. Ann. Inst. H. Poincaré45, 61 (1986)Google Scholar

Copyright information

© Springer-Verlag 1987

Authors and Affiliations

  • L. Bonora
    • 1
  • P. Cotta-Ramusino
    • 2
  • M. Rinaldi
    • 3
  • J. Stasheff
    • 4
  1. 1.Theory Division, CERNGeneve 23Switzerland
  2. 2.Dipartmento di Fisica dell'Universitá di Milano and Instituto Nazionale di Fisica NucleareMilanoItaly
  3. 3.International School for Advanced Studies Strada Costiera 11TriesteItaly
  4. 4.Department of MathematicsRutgers UniversityNew BrunswickUSA

Personalised recommendations