Communications in Mathematical Physics

, Volume 125, Issue 1, pp 127–145 | Cite as

Hydrodynamics of stochastic cellular automata

  • A. DeMasi
  • R. Esposito
  • J. L. Lebowitz
  • E. Presutti


We investigate a stochastic version of cellular automata used for simulating hydrodynamical flows, e.g. the HPP and FHP models. The extra stochasticity consists of “random exchanges” between neighboring cells which conserve momentum. We prove that, in suitable limits, these models satisfy the appropriate continuous Boltzmann and hydrodynamic equations, the same as those conjectured for the original models (except that there is no negative viscosity contribution). The results are obtained by proving a very strong form of propagation of chaos and by using Hilbert-Chapman-Enskog type expansions. Explicit proofs are presented for the stochastic HPP model.


Viscosity Neural Network Original Model Cellular Automaton Quantum Computing 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Frish, U., Hasslacher, B., Pomeau, Y.: Lattice gas automata for Navier Stokes equation. Phys. Rev. Lett.56, 1505 (1986)Google Scholar
  2. 2.
    Frisch, U., d'Humières, D., Hasslacher, B., Lallemand, P., Pomeau, Y., Rivet, J.-P.: Lattice gas hydrodynamics in two and three dimensions. Complex Syst.1, 648 (1987)Google Scholar
  3. 3.
    Wolfram, S.: Cellular Automaton fluids. 1. Basic theory. J. Stat. Phys.45, 471 (1986)Google Scholar
  4. 4.
    Hardy, J., de Pazzis, O., Pomeau, Y.: Molecular dynamics of classical lattice gas: Transport properties and time correlation functions. Phys. Rev. A13, 1949 (1976)Google Scholar
  5. 5.
    DeMasi, A., Esposito, R. Lebowitz, J.L., Presutti, E.: Rigorous results on some stochastic cellular automata, Proceedings of the Conference: Discrete kinetic theory, lattice gas dynamics and foundations of hydrodynamics held in Torino, Sept. 20–23, 1988. World Scientific (1989)Google Scholar
  6. 6.
    DeMasi, A., Esposito, R., Lebowitz, J.L.: Incompressible Navier-Stokes and Euler limits of the Boltzmann equation. Commun. Pure Appl. Math. (to appear)Google Scholar
  7. 7.
    Boghosian, B., Levermore, D.: A cellular automaton for Burgers equation. Complex Syst.1, 17–30 (1987)Google Scholar
  8. 8.
    Higuera, F.J., Succi, S., Benzi, R.: Lattice gas dynamics with enhanced collisions. Preprint 1989Google Scholar
  9. 9.
    McNamara, G., Zannetti, G.: Phys. Rev. Lett. (1988)Google Scholar
  10. 10.
    Lebowitz, J.L., Orlandi, E., Presutti, E.: Convergence of stochastic cellular automaton to Burgers' equation: fluctuations and stability. Physica D33, 165–188 (1988)Google Scholar
  11. 11.
    Calderoni, P., Pellegrinotti, A., Presutti, E., Vares, M.E.: Transient bimodality in interacting particle systems. J. Stat. Phys. (to appear)Google Scholar
  12. 12.
    Lanford III, O.E.: Time evolution of large classical systems; Dynamical systems, theory and applications. Moser, J., (ed.) Lecture Notes in Physics, vol. 38, p. 1, Berlin, Heidelberg, New York: Springer 1975Google Scholar
  13. 13.
    Caflisch, R.: The fluid dynamic limit of the nonlinear Boltzmann equation. Commun. Pure Appl. Math.33, 651–666 (1980)Google Scholar
  14. 14.
    Bardos, C., Golse, F., Levermore, D.: Compte Rendu (to appear)Google Scholar
  15. 15.
    Ladyzhenskaja, O.A.: The mathematical theory of Viscous incompressible flows. New York: Gordon and Breach 1969Google Scholar

Copyright information

© Springer-Verlag 1989

Authors and Affiliations

  • A. DeMasi
    • 1
  • R. Esposito
    • 1
  • J. L. Lebowitz
    • 1
  • E. Presutti
    • 1
  1. 1.IHESBures sur YvetteFrance

Personalised recommendations