Advertisement

Communications in Mathematical Physics

, Volume 125, Issue 1, pp 81–90 | Cite as

The droplet in the tube: A case of phase transition in the canonical ensemble

  • S. B. Shlosman
Article

Abstract

We consider the 2-dimensional Ising model with ferromagnetic nearest neighbour interaction at inverse temperatureβ. LetS N σ t be the total magnetization inside anN×N square boxΛ,μ Λ per be the Gibbs state inΛ with periodic b.c., andm(β) be the spontaneous magnetization. We show the existence of the limit
$$\psi (\varrho ) = \mathop {\lim }\limits_{N \to \infty } \left( { - \frac{1}{{\beta N}}} \right)\ln \mu _\Lambda ^{per} (S_N = [N\varrho ])$$
for |ϱ|<m(β), providedβ is large enough. It turns out that the quantityψ(ϱ) is closely related to the Wulf construction, and the dependence of the functionψ(ϱ) onϱ is singular.

Keywords

Neural Network Phase Transition Statistical Physic Complex System Nonlinear Dynamics 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [CCS]
    Chayes, J.T., Chayes, L., Schonmann, R.M.: Exponential decay of connectivities in the two-dimensional Ising model. J. Stat. Phys.49, 433–445 (1987)Google Scholar
  2. [DKS]
    Dobrushin, R.L., Kotecky, R., Shlosman, S.B.: The Wulf construction-rigorous proof for two-dimensional ferromagnets (to appear)Google Scholar
  3. [DPS]
    Dobrushin, R.L., Pfister, Ch.E., Shlosman, S.B.: In preparationGoogle Scholar
  4. [FP]
    Fröhlich, J., Pfister, Ch.E.: Semiinfinite Ising model. I. Commun. Math. Phys.109, 493–523 (1987)Google Scholar
  5. [P]
    Pfister, Ch.E.: Private communicationGoogle Scholar
  6. [S]
    Schonmann, R.H.: Second order large deviation estimates for ferromagnetic systems in the phase coexistence region. Commun. Math. Phys.112, 409–422 (1987)Google Scholar
  7. [T]
    Taylor, J.E.: Existence and structure of solutions to a class of non-elliptic variational problems. Symposia Mathematica14, 499–508 (1974)Google Scholar
  8. [W]
    Winterbottom, W.L.: Acta Metal.15, 303 (1967)Google Scholar
  9. [Wu]
    Wulf, G.: Z. Krist. Mineral.34, 449 (1901)Google Scholar
  10. [ZAT]
    Zia, R.K.P., Avron, J.E., Taylor, J.E.: The Summertop construction: Crystals in a corner. J. Stat. Phys.50, 727–736 (1988)Google Scholar

Copyright information

© Springer-Verlag 1989

Authors and Affiliations

  • S. B. Shlosman
    • 1
  1. 1.Centre de Physique ThéoriqueCNRS -- Luminy, Case 907Marseille Cedex 9France

Personalised recommendations