Skip to main content
Log in

The Chandrasekhar theory of stellar collapse as the limit of quantum mechanics

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

Starting with a “relativistic” Schrödinger Hamiltonian for neutral gravitating particles, we prove that as the particle numberN→∞ and the gravitation constantG→0 we obtain the well known semiclassical theory for the ground state of stars. For fermions, the correct limit is to fixGN 2/3 and the Chandrasekhar formula is obtained. For bosons the correct limit is to fixGN and a Hartree type equation is obtained. In the fermion case we also prove that the semiclassical equation has a unique solution — a fact which had not been established previously.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Auchmuty, J., Beals, R.: Variational solutions of some nonlinear free boundary problems. Arch. Ration. Mech. Anal.43, 255–271 (1971). See also Models of rotating stars. Astrophys. J.165, L79–L82 (1971)

    Google Scholar 

  2. Chandrasekhar, S.: Phil. Mag.11, 592 (1931); Astrophys. J.74, 81 (1931); Monthly Notices Roy. Astron. Soc.91, 456 (1931); Rev. Mod. Phys.56, 137 (1984)

    Google Scholar 

  3. Conlon, J.: The ground state energy of a classical gas. Commun. Math. Phys.94, 439–458 (1984)

    Google Scholar 

  4. Daubechies, I.: An uncertainty principle for fermions with generalized kinetic energy. Commun. Math. Phys.90, 511–520 (1983)

    Google Scholar 

  5. Daubechies, I., Lieb, E.H.: One-electron relativistic molecules with Coulomb interaction. Commun. Math. Phys.90, 497–510 (1983)

    Google Scholar 

  6. Fefferman, C., de la Llave, R.: Relativistic stability of matter. I. Rev. Math. Iberoamericana2, 119–215 (1986)

    Google Scholar 

  7. Fowler, R.H.: Monthly Notices Roy. Astron. Soc.87, 114 (1926)

    Google Scholar 

  8. Herbst, I.: Spectral theory of the operator (p 2+m 2)1/2ze 2/r. Commun. Math. Phys.53, 285–294 (1977); Errata ibid.55, 316 (1977)

    Google Scholar 

  9. Kato, T.: Perturbation theory for linear operators. Berlin, Heidelberg, New York: Springer 1966. See Remark 5.12, p. 307

    Google Scholar 

  10. Kovalenko, V., Perelmuter, M., Semenov, Ya.: Schrödinger operators withL 1/2 w (ℝl) potentials. J. Math. Phys.22, 1033–1044 (1981)

    Google Scholar 

  11. Landau, L.: Phys. Z. Sowjetunion1, 285 (1932)

    Google Scholar 

  12. Lieb, E.: The number of bound states of one-body Schrödinger operators and the Weyl problem. Proc. Am. Math. Soc. Symp. Pure Math.36, 241–252 (1980). See also: Bounds on the eigenvalues of the Laplace and Schrödinger operators. Bull. Am. Math. Soc.82, 751–753 (1976)

    Google Scholar 

  13. Lieb, E.: Existence and uniqueness of the minimizing solution of Choquard's nonlinear equation. Stud. Appl. Math.57, 93–105 (1977)

    Google Scholar 

  14. Lieb, E.: Variational principle for many-fermions systems. Phys. Rev. Lett.46, 457–459 (1981); Errata ibid.47, 69 (1981)

    Google Scholar 

  15. Lieb, E.: Thomas-Fermi and related theories of atoms and molecules. Rev. Mod. Phys.53, 603–641 (1981); Errata ibid.54, 311 (1982)

    Google Scholar 

  16. Lieb, E.: Density functionals for Coulomb systems. Int. J. Quant. Chem.24, 243–277 (1983)

    Google Scholar 

  17. Lieb, E., Oxford, S.: An improved lower bound on the indirect Coulomb energy. Int. J. Quant. Chem.19, 427–439 (1981)

    Google Scholar 

  18. Lieb, E., Simon, B.: Thomas Fermi theory of atoms, molecules and solids. Adv. Math.23, 22–116 (1977)

    Google Scholar 

  19. Lieb, E., Thirring, W.: Gravitational collapse in quantum mechanics with relativistic kinetic energy. Ann. Phys. (NY)155, 494–512 (1984)

    Google Scholar 

  20. Lions, P.-L.: The concentration compactness principle in the calculus of variations; the locally compact case I. Ann. Inst. H. Poincaré Anal. non lineaire1, 109–145 (1984)

    Google Scholar 

  21. Messer, J.: Lecture Notes in Physics, Vol. 147. Berlin, Heidelberg, New York: Springer 1981

    Google Scholar 

  22. Morrey, C.B., Jr.: Multiple integrals in the calculus of variations, Theorem 5.8.6. Berlin, Heidelbereg, New York: Springer 1966

    Google Scholar 

  23. Ni, W.M.: Uniqueness of solutions of nonlinear Dirichlet problems. J. Differ. Equations5, 289–304 (1983)

    Google Scholar 

  24. Straumann, S.: General relativity and relativistic astrophysics. Berlin, Heidelberg, New York: Springer 1984

    Google Scholar 

  25. Thirring, W.: Bosonic black holes. Phys. Lett. B127, 27 (1983)

    Google Scholar 

  26. Weder, R.: Spectral analysis of pseudodifferential operators. J. Funct. Anal.20, 319–337 (1975)

    Google Scholar 

  27. Weinberg, S.: Gravitation and cosmology. New York: Wiley 1972

    Google Scholar 

  28. Hamada, T., Salpeter, E.: Models for zero temperature stars. Astrophys. J.134, 683 (1961)

    Google Scholar 

  29. Shapiro, S., Teukolsky, S.: Black holes, white dwarfs and neutron stars. New York: Wiley 1983

    Google Scholar 

  30. Ruffini, R., Bonazzola, S.: Systems of self-gravitating particles in general relativity and the concept of an equation of state. Phys. Rev.187, 1767–1783 (1969)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by E.H. Lieb

Dedicated to Walter Thirring on his 60th birthday

Work partially supported by U.S. National Science Foundation grant PHY 85-15288-A01

Work supported by Alfred Sloan Foundation dissertation Fellowship

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lieb, E.H., Yau, HT. The Chandrasekhar theory of stellar collapse as the limit of quantum mechanics. Commun.Math. Phys. 112, 147–174 (1987). https://doi.org/10.1007/BF01217684

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01217684

Keywords

Navigation