Communications in Mathematical Physics

, Volume 96, Issue 1, pp 125–144 | Cite as

On the existence of thermodynamics for the random energy model

  • Enzo Olivieri
  • Pierre Picco


Derrida's random energy model is considered. Almost sure andL P convergence of the free energy at any inverse temperature β are proven. Rigorous upper and lower bounds to the finite size corrections to the free energy are given.


Neural Network Free Energy Statistical Physic Complex System Lower Bound 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. I.
    Derrida, B.: Random energy model: Limit of a family of disordered models. Phys. Rev. Lett.45, 79–82 (1980)Google Scholar
  2. II.
    Derrida, B. Random energy model: An exactly solvable model of disordered systems. Phys. Rev. B24, 2613–2626 (1981)Google Scholar
  3. III.
    Sherrington, D., Kirkpatrick, S.: Solvable model of a spin-glass. Phys. Rev. Lett.35, 1792–1796 (1975)Google Scholar
  4. IV.
    Eisele, Th.: On a third order phase transition. Commun. Math. Phys.90, 125–159 (1983)Google Scholar
  5. V.
    Chow, Y.S., Teicher, H.: Probability theory. Berlin, Heidelberg, New York: Springer 1978Google Scholar
  6. VI.
    Petrov, V.V.: Sums of independent random variables. Berlin, Heidelberg, New York: Springer 1975, p. 55Google Scholar
  7. VII.
    Orey, S., Taylor, J.: Proc. London Math. Soc.3, 174–192 (1974), Lemma 2.1Google Scholar

Copyright information

© Springer-Verlag 1984

Authors and Affiliations

  • Enzo Olivieri
    • 1
    • 2
  • Pierre Picco
    • 1
  1. 1.Centre de Physique Théorique, C.N.R.S.-LuminyMarseille Cedex 9France
  2. 2.Université de ProvenceFrance

Personalised recommendations