Advertisement

Communications in Mathematical Physics

, Volume 96, Issue 1, pp 115–124 | Cite as

On solvable models in classical lattice systems

  • M. Fannes
  • A. Verbeure
Article

Abstract

We consider one dimensional classical lattice systems and an increasing sequence ℒ n (n=1,2, ...) of subsets of the state space; ℒ n takes into account correlations betweenn successive lattice points.

If the interaction range of the potential is finite, we prove that the equilibrium states defined by the variational principle are elements of {ℒ n }n<∞. Finally we give a new proof of the fact that all faithful states of ℒ n are DLR-states for some potential.

Keywords

Neural Network Statistical Physic Equilibrium State Complex System State Space 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bethe, H.A.: On the annihilation radiation of positrons, Proc. R. Soc. A150, 129 (1935)Google Scholar
  2. 2.
    Peierls, R.: Proc. Camb. Philos. Soc. A32, 471 (1936)Google Scholar
  3. 3.
    Hymans, J., de Boer, J.: An approximation method for order-disorder problems I, and II. Physica21, 471 (1955) and21, 485 (1955)Google Scholar
  4. 4.
    Accardi, L.: Topics in quantum probability. Phys. Rep.77, 169 (1981)Google Scholar
  5. 5.
    Spitzer, F.: Am. Math. Monthly78, 142 (1971)Google Scholar
  6. 6.
    Ruelle, D.: Statistical mechanics of a one-dimensional lattice gas. Commun. Math. Phys.9, 267 (1968)Google Scholar
  7. 7.
    Brascamp, H.J.: Equilibrium states for a one dimensional lattice gas. Commun. Math. Phys.21, 56 (1971)Google Scholar
  8. 8.
    Vertogen, G., de Vries, A.S.: The Ising problem. Commun. Math. Phys.29, 131 (1973)Google Scholar
  9. 9.
    Shiga, T.: Z. Wahrsch. Theor. Verw. Geb.39, 339 (1977)Google Scholar
  10. 10.
    Dobrushin, R.L.: Theor. Prob. Appl.13, 197 (1968)Google Scholar

Copyright information

© Springer-Verlag 1984

Authors and Affiliations

  • M. Fannes
    • 1
  • A. Verbeure
    • 1
  1. 1.Instituut voor Theoretische FysicaUniversiteit LeuvenLeuvenBelgium

Personalised recommendations