Skip to main content
Log in

Computation theory of cellular automata

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

Self-organizing behaviour in cellular automata is discussed as a computational process. Formal language theory is used to extend dynamical systems theory descriptions of cellular automata. The sets of configurations generated after a finite number of time steps of cellular automaton evolution are shown to form regular languages. Many examples are given. The sizes of the minimal grammars for these languages provide measures of the complexities of the sets. This complexity is usually found to be non-decreasing with time. The limit sets generated by some classes of cellular automata correspond to regular languages. For other classes of cellular automata they appear to correspond to more complicated languages. Many properties of these sets are then formally non-computable. It is suggested that such undecidability is common in these and other dynamical systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wolfram, S.: Statistical mechanics of cellular automata. Rev. Mod. Phys.55, 601 (1983)

    Google Scholar 

  2. Wolfram, S.: Universality and complexity in cellular automata. Physica10D, 1 (1984)

    Google Scholar 

  3. Packard, N.H.: Complexity of growing patterns in cellular automata, Institute for Advanced Study preprint (October 1983), and to be published in Dynamical behaviour of automata. Demongeot, J., Goles, E., Tchuente, M., (eds.). Academic Press (proceedings of a workshop held in Marseilles, September 1983)

  4. Wolfram, S.: Cellular automata as models for complexity. Nature (to be published)

  5. Wofram, S.: Cellular automata. Los Alamos Science, Fall 1983 issue

  6. Beckman, F.S.: Mathematical foundations of programming. Reading, MA: Addison-Wesley 1980

    Google Scholar 

  7. Hopcroft, J.E., Ullman, J.D.: Introduction to automata theory, languages, and computation. Reading, MA: Addison-Wesley 1979

    Google Scholar 

  8. Minsky, M.: Computation: finite and infinite machines Englewood Cliffs, NJ: Prentice-Hall 1967

    Google Scholar 

  9. Rozenberg, G., Salomaa, A. (eds.): L systems. In: Lecture Notes in Computer Science, Vol. 15

  10. Rozenberg, G., Salomaa, A.: The mathematical theory of L systems. New York: Academic Press 1980

    Google Scholar 

  11. Guckenheimer, J., Holmes, P.: Nonlinear oscillations, dynamical systems, and bifurcations of vector fields. Berlin, Heidelberg, New York: Springer 1983

    Google Scholar 

  12. Walters, P.: An introduction to ergodic theory. Berlin, Heidelberg, New York: Springer 1982

    Google Scholar 

  13. Weiss, B.: Subshifts of finite type and sofic systems. Monat. Math.17, 462 (1973); Coven, E.M., Paul, M.E.: Sofic systems. Israel J. Math.20 165 (1975)

    Google Scholar 

  14. Field, R.D., Wolfram, S.: A QCD model fore + e annihilation. Nucl. Phys. B213, 65 (1983)

    Google Scholar 

  15. Smith, A.R.: Simple computation-universal cellular spaces. J. ACM18, 331 (1971)

    Google Scholar 

  16. Berlekamp, E.R., Conway, J.H., Guy, R.K.: Winning ways for your mathematical plays. New York: Academic Press, Vol. 2, Chap. 25

  17. Lind, D.: Applications of ergodic theory and sofic systems to cellular automata. Physica10D, 36 (1984)

    Google Scholar 

  18. de Bruijn, N.G.: A combinatorial problem. Ned. Akad. Weten. Proc.49, 758 (1946);

    Google Scholar 

  19. Good, I.J.; Normal recurring decimals. J. Lond. Math. Soc.21, 167 (1946)

    Google Scholar 

  20. Nerode, A.: Linear automaton transformations. Proc. Am. Math. Soc.9, 541 (1958)

    Google Scholar 

  21. Cvetkovic, D., Doob, M., Sachs, H.: Spectra of graphs. New York: Academic Press 1980

    Google Scholar 

  22. Billingsley, P.: Ergodic theory and information. New York: Wiley 1965

    Google Scholar 

  23. Chomsky, N., Miller, G.A.: Finite state languages. Inform. Control1, 91 (1958)

    Google Scholar 

  24. Stewart, I.N., Tall, D.O.: Algebraic number theory. London: Chapman & Hall 1979

    Google Scholar 

  25. Lind, D.A.: The entropies of topological Markow shifts and a related class of algebraic integers. Ergodic Theory and Dynamical Systems (to be published)

  26. Milnor, J.: Unpublished notes (cited in [2])

  27. Hedlund, G.A.: Endomorphisms and automorphisms of the shift dynamical system. Math. Syst. Theor.3, 320 (1969);

    Google Scholar 

  28. Hedlund, G.A.: Transformations commuting with the shift. In: Topological dynamics. Auslander, J., Gottschalk, W.H. (eds.). New York: Benjamin 1968

    Google Scholar 

  29. Amoroso, S., Patt, Y.N.: Decision procedures for surjectivity and injectivity of parallel maps for tessellation structures. J. Comp. Syst. Sci.6, 448 (1972)

    Google Scholar 

  30. Nasu, M.: Local maps inducing surjective global maps of one-dimensional tessellation automata. Math. Syst. Theor.11, 327 (1978)

    Google Scholar 

  31. Garey, M.R., Johnson, D.S.: Computers and intractability: a guide to the theory of NP-completeness. San Francisco: Freeman 1979, Sect. A10

    Google Scholar 

  32. Martin, O., Odlyzko, A.M., Wolfram, S.: Algebraic properties of cellular automata. Commun. Math. Phys.93, 219 (1984)

    Google Scholar 

  33. Hedlund, G.: Private communication

  34. Manning, A.: Axiom A diffeomorphisms have rational zeta functions. Bull. Lond. Math. Soc.3, 215 (1971);

    Google Scholar 

  35. Coven, E., Paul, M.: Finite procedures for sofic systems. Monat. Math.83, 265 (1977)

    Google Scholar 

  36. Franks, J.: Private communication

  37. Coven, E.: Private communication

  38. Hurd, L.: Formal language characterizations of cellular automata limit sets (to be published)

  39. Rosenfeld, A.: Picture languages. New York: Academic Press (1979)

    Google Scholar 

  40. Golze, U.: Differences between 1- and 2-dimensional cell spaces. In: Automata, Languages and Development, Lindenmayer, A., Rozenberg, G. (eds.). Amsterdam: North-Holland 1976

    Google Scholar 

  41. Yaku, T.: The constructibility of a configuration in a cellular automaton. J. Comput. System Sci.7, 481 (1983)

    Google Scholar 

  42. Grassberger, P.: Private communication

  43. Grassberger, P.: A new mechanism for deterministic diffusion. Phys. Rev. A (to be published)

  44. Chaos and diffusion in deterministic cellular automata. Physica10 D, 52 (1984)

    Google Scholar 

  45. Hillis, D., Hurd, L.: Private communications

  46. Salomaa, A., Soittola, M.: Automata-theoretic aspects of formal power series. Berlin, Heidelberg, New York: Springer 1978

    Google Scholar 

  47. Kuich, W.: On the entropy of context-free languages. Inform. Cont.16, 173 (1970)

    Google Scholar 

  48. Chaitin, G.: Algorithmic information theory. IBM J. Res. Dev.21, 350 (1977)

    Google Scholar 

  49. Kaminger, F.P.: The non-computability of the channel capacity of context-sensitive languages. Inform. Cont.17, 175 (1970)

    Google Scholar 

  50. Smith, A.R.: Real-time language recognition by one-dimensional cellular automata. J. Comput. Syst. Sci.6, 233 (1972)

    Google Scholar 

  51. Sommerhalder, R., van Westrhenen, S.C.: Parallel language recognition in constant time by cellular automata. Acta Inform.19, 397 (1983)

    Google Scholar 

  52. Rogers, H.: Theory of recursive functions and effective computability. New York: McGraw-Hill 1967

    Google Scholar 

  53. Bennett, C.H.: On the logical “depth” of sequences and their reducibilities to random sequences. Inform. Control (to be published)

  54. Conway, J.H.: Regular algebra and finite machines. London: Chapman & Hall 1971

    Google Scholar 

  55. Shannon, C.E.: Prediction and entropy of printed English. Bell Syst. Tech. J.30, 50 (1951)

    Google Scholar 

  56. Wolfram, S.: SMP reference manual. Computer Mathematics Group. Los Angeles: Inference Corporation 1983

    Google Scholar 

  57. Packard, N.H., Wolfram, S.: Two dimensional cellular automata. Institute for Advanced Study preprint, May 1984

  58. Hopcroft, H.: Ann logn algorithm for minimizing states in a finite automaton. In: Proceedings of the International Symposium on the Theory of Machines and Computations. New York: Academic Press 1971

    Google Scholar 

  59. Hurd, L.: Private communication

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by O. E. Lanford

Work supported in part by the U.S. Office of Naval Research under contract number N 00014-80-C-0657

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wolfram, S. Computation theory of cellular automata. Commun.Math. Phys. 96, 15–57 (1984). https://doi.org/10.1007/BF01217347

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01217347

Keywords

Navigation