Communications in Mathematical Physics

, Volume 96, Issue 1, pp 15–57 | Cite as

Computation theory of cellular automata

  • Stephen Wolfram


Self-organizing behaviour in cellular automata is discussed as a computational process. Formal language theory is used to extend dynamical systems theory descriptions of cellular automata. The sets of configurations generated after a finite number of time steps of cellular automaton evolution are shown to form regular languages. Many examples are given. The sizes of the minimal grammars for these languages provide measures of the complexities of the sets. This complexity is usually found to be non-decreasing with time. The limit sets generated by some classes of cellular automata correspond to regular languages. For other classes of cellular automata they appear to correspond to more complicated languages. Many properties of these sets are then formally non-computable. It is suggested that such undecidability is common in these and other dynamical systems.


Neural Network Dynamical System Nonlinear Dynamics Finite Number Cellular Automaton 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Wolfram, S.: Statistical mechanics of cellular automata. Rev. Mod. Phys.55, 601 (1983)Google Scholar
  2. 2.
    Wolfram, S.: Universality and complexity in cellular automata. Physica10D, 1 (1984)Google Scholar
  3. 3.
    Packard, N.H.: Complexity of growing patterns in cellular automata, Institute for Advanced Study preprint (October 1983), and to be published in Dynamical behaviour of automata. Demongeot, J., Goles, E., Tchuente, M., (eds.). Academic Press (proceedings of a workshop held in Marseilles, September 1983)Google Scholar
  4. 4.
    Wolfram, S.: Cellular automata as models for complexity. Nature (to be published)Google Scholar
  5. 5.
    Wofram, S.: Cellular automata. Los Alamos Science, Fall 1983 issueGoogle Scholar
  6. 6.
    Beckman, F.S.: Mathematical foundations of programming. Reading, MA: Addison-Wesley 1980Google Scholar
  7. 7.
    Hopcroft, J.E., Ullman, J.D.: Introduction to automata theory, languages, and computation. Reading, MA: Addison-Wesley 1979Google Scholar
  8. 8.
    Minsky, M.: Computation: finite and infinite machines Englewood Cliffs, NJ: Prentice-Hall 1967Google Scholar
  9. 9.
    Rozenberg, G., Salomaa, A. (eds.): L systems. In: Lecture Notes in Computer Science, Vol. 15Google Scholar
  10. 9a.
    Rozenberg, G., Salomaa, A.: The mathematical theory of L systems. New York: Academic Press 1980Google Scholar
  11. 10.
    Guckenheimer, J., Holmes, P.: Nonlinear oscillations, dynamical systems, and bifurcations of vector fields. Berlin, Heidelberg, New York: Springer 1983Google Scholar
  12. 11.
    Walters, P.: An introduction to ergodic theory. Berlin, Heidelberg, New York: Springer 1982Google Scholar
  13. 12.
    Weiss, B.: Subshifts of finite type and sofic systems. Monat. Math.17, 462 (1973); Coven, E.M., Paul, M.E.: Sofic systems. Israel J. Math.20 165 (1975)Google Scholar
  14. 13.
    Field, R.D., Wolfram, S.: A QCD model fore + e annihilation. Nucl. Phys. B213, 65 (1983)Google Scholar
  15. 14.
    Smith, A.R.: Simple computation-universal cellular spaces. J. ACM18, 331 (1971)Google Scholar
  16. 15.
    Berlekamp, E.R., Conway, J.H., Guy, R.K.: Winning ways for your mathematical plays. New York: Academic Press, Vol. 2, Chap. 25Google Scholar
  17. 16.
    Lind, D.: Applications of ergodic theory and sofic systems to cellular automata. Physica10D, 36 (1984)Google Scholar
  18. 17.
    de Bruijn, N.G.: A combinatorial problem. Ned. Akad. Weten. Proc.49, 758 (1946);Google Scholar
  19. 17a.
    Good, I.J.; Normal recurring decimals. J. Lond. Math. Soc.21, 167 (1946)Google Scholar
  20. 18.
    Nerode, A.: Linear automaton transformations. Proc. Am. Math. Soc.9, 541 (1958)Google Scholar
  21. 19.
    Cvetkovic, D., Doob, M., Sachs, H.: Spectra of graphs. New York: Academic Press 1980Google Scholar
  22. 20.
    Billingsley, P.: Ergodic theory and information. New York: Wiley 1965Google Scholar
  23. 21.
    Chomsky, N., Miller, G.A.: Finite state languages. Inform. Control1, 91 (1958)Google Scholar
  24. 22.
    Stewart, I.N., Tall, D.O.: Algebraic number theory. London: Chapman & Hall 1979Google Scholar
  25. 23.
    Lind, D.A.: The entropies of topological Markow shifts and a related class of algebraic integers. Ergodic Theory and Dynamical Systems (to be published)Google Scholar
  26. 24.
    Milnor, J.: Unpublished notes (cited in [2])Google Scholar
  27. 25.
    Hedlund, G.A.: Endomorphisms and automorphisms of the shift dynamical system. Math. Syst. Theor.3, 320 (1969);Google Scholar
  28. 25a.
    Hedlund, G.A.: Transformations commuting with the shift. In: Topological dynamics. Auslander, J., Gottschalk, W.H. (eds.). New York: Benjamin 1968Google Scholar
  29. 26.
    Amoroso, S., Patt, Y.N.: Decision procedures for surjectivity and injectivity of parallel maps for tessellation structures. J. Comp. Syst. Sci.6, 448 (1972)Google Scholar
  30. 27.
    Nasu, M.: Local maps inducing surjective global maps of one-dimensional tessellation automata. Math. Syst. Theor.11, 327 (1978)Google Scholar
  31. 28.
    Garey, M.R., Johnson, D.S.: Computers and intractability: a guide to the theory of NP-completeness. San Francisco: Freeman 1979, Sect. A10Google Scholar
  32. 29.
    Martin, O., Odlyzko, A.M., Wolfram, S.: Algebraic properties of cellular automata. Commun. Math. Phys.93, 219 (1984)Google Scholar
  33. 30.
    Hedlund, G.: Private communicationGoogle Scholar
  34. 31.
    Manning, A.: Axiom A diffeomorphisms have rational zeta functions. Bull. Lond. Math. Soc.3, 215 (1971);Google Scholar
  35. 31a.
    Coven, E., Paul, M.: Finite procedures for sofic systems. Monat. Math.83, 265 (1977)Google Scholar
  36. 32.
    Franks, J.: Private communicationGoogle Scholar
  37. 33.
    Coven, E.: Private communicationGoogle Scholar
  38. 34.
    Hurd, L.: Formal language characterizations of cellular automata limit sets (to be published)Google Scholar
  39. 35.
    Rosenfeld, A.: Picture languages. New York: Academic Press (1979)Google Scholar
  40. 36.
    Golze, U.: Differences between 1- and 2-dimensional cell spaces. In: Automata, Languages and Development, Lindenmayer, A., Rozenberg, G. (eds.). Amsterdam: North-Holland 1976Google Scholar
  41. 36a.
    Yaku, T.: The constructibility of a configuration in a cellular automaton. J. Comput. System Sci.7, 481 (1983)Google Scholar
  42. 37.
    Grassberger, P.: Private communicationGoogle Scholar
  43. 38.
    Grassberger, P.: A new mechanism for deterministic diffusion. Phys. Rev. A (to be published)Google Scholar
  44. 38a.
    Chaos and diffusion in deterministic cellular automata. Physica10 D, 52 (1984)Google Scholar
  45. 39.
    Hillis, D., Hurd, L.: Private communicationsGoogle Scholar
  46. 40.
    Salomaa, A., Soittola, M.: Automata-theoretic aspects of formal power series. Berlin, Heidelberg, New York: Springer 1978Google Scholar
  47. 41.
    Kuich, W.: On the entropy of context-free languages. Inform. Cont.16, 173 (1970)Google Scholar
  48. 42.
    Chaitin, G.: Algorithmic information theory. IBM J. Res. Dev.21, 350 (1977)Google Scholar
  49. 43.
    Kaminger, F.P.: The non-computability of the channel capacity of context-sensitive languages. Inform. Cont.17, 175 (1970)Google Scholar
  50. 44.
    Smith, A.R.: Real-time language recognition by one-dimensional cellular automata. J. Comput. Syst. Sci.6, 233 (1972)Google Scholar
  51. 45.
    Sommerhalder, R., van Westrhenen, S.C.: Parallel language recognition in constant time by cellular automata. Acta Inform.19, 397 (1983)Google Scholar
  52. 46.
    Rogers, H.: Theory of recursive functions and effective computability. New York: McGraw-Hill 1967Google Scholar
  53. 47.
    Bennett, C.H.: On the logical “depth” of sequences and their reducibilities to random sequences. Inform. Control (to be published)Google Scholar
  54. 48.
    Conway, J.H.: Regular algebra and finite machines. London: Chapman & Hall 1971Google Scholar
  55. 49.
    Shannon, C.E.: Prediction and entropy of printed English. Bell Syst. Tech. J.30, 50 (1951)Google Scholar
  56. 50.
    Wolfram, S.: SMP reference manual. Computer Mathematics Group. Los Angeles: Inference Corporation 1983Google Scholar
  57. 51.
    Packard, N.H., Wolfram, S.: Two dimensional cellular automata. Institute for Advanced Study preprint, May 1984Google Scholar
  58. 52.
    Hopcroft, H.: Ann logn algorithm for minimizing states in a finite automaton. In: Proceedings of the International Symposium on the Theory of Machines and Computations. New York: Academic Press 1971Google Scholar
  59. 53.
    Hurd, L.: Private communicationGoogle Scholar

Copyright information

© Springer-Verlag 1984

Authors and Affiliations

  • Stephen Wolfram
    • 1
  1. 1.The Institute for Advanced StudyPrincetonUSA

Personalised recommendations