Skip to main content
Log in

Bifurcations from an invariant circle for two-parameter families of maps of the plane: A computer-assisted study

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We consider a two-parameter family of maps of the plane to itself. Each map has a fixed point in the first quadrant and is a diffeomorphism in a neighborhood of this point. For certain parameter values there is a Hopf bifurcation to an invariant circle, which is smooth for parameter values in a neighborhood of the bifurcation point. However, computer simulations show that the corresponding invariant set fails to be even topologically a circle for parameter values far from the bifurcation point. This paper is an attempt to elucidate some of the mechanisms involved in this loss of smoothness and alteration of topological type.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Arnol'd, V.I.: Loss of stability of self-oscillations close to resonance and versal deformations of equivarient vector fields. Funct. Anal. Appl.11, 1–10 (1977)

    Google Scholar 

  2. Aronson, D.G., Chory, M.A., Hall, G.R., McGehee, R.P.: A discrete dynamical system with subtly wild behavior. New approaches to nonlinear problems in dynamics, Holmes, P. (ed.). SIAM 1980

  3. Bowen, R.: On axiomA diffeomorphisms. CBMS Regional Conference Series in Mathematics, No. 35. Providence, Rhode Island: Am. Math. Soc. 1978

    Google Scholar 

  4. Conley, C.: Isolated invariant sets and the Morse index. CBMS Regional Conference Series in Mathematics, No. 38. Providence, Rhode Island: Am. Math. Soc. 1978

    Google Scholar 

  5. Conley, C.: Hyperbolic sets and shift automorphisms. Dynamical systems: theory and applications. In: Lecture Notes in Physics, Vol. 38, Moser, J. (ed.), pp. 539–549. Berlin, Heidelberg, New York: Springer 1975

    Google Scholar 

  6. Curry, J., Yorke, J.: A transition from Hopf bifurcation to chaos: computer experiments on maps inR 2. The structure of attractors in dynamical systems. In: Lecture Notes in Mathematics, Vol. 668, pp. 48–68. Berlin, Heidelberg, New York: Springer 1978

    Google Scholar 

  7. Fenichel, N.: Persistence and smoothness of invariant manifolds for flows, Ind. Univ. Math. J.21, 193–226 (1971)

    Google Scholar 

  8. Flaherty, J., Hoppensteadt, F.: Frequency entrainment of a forced van der Pol oscillator. Stud. Appl. Math.58, 5–15 (1978)

    Google Scholar 

  9. Guckenheimer, J.: A strange, strange attractor. The Hopf bifurcation theorem and its applications, Marsden, J., McCracken, M. (eds.), pp. 368–381. Berlin, Heidelberg, New York: Springer 1976

    Google Scholar 

  10. Guckenheimer, J.: On the bifurcation of maps of the interval. Invent. Math.39, 165–178 (1977)

    Google Scholar 

  11. Guckenheimer, J., Williams, R.F.: Structural stability of Lorenz attractors. Publ. Math. I.H.E.S.50, 307–320 (1979)

    Google Scholar 

  12. Hartman, P.: Ordinary differential equations. New York: Wiley 1964

    Google Scholar 

  13. Hénon, M.: A two-dimensional mapping with a strange attractor. Commun. Math. Phys.50, 67–77 (1976)

    Google Scholar 

  14. Iooss, G.: Topics in bifurcation of maps and applications. Math. Stud. 36. Amsterdam: North-Holland 1979

    Google Scholar 

  15. Levi, M.: Qualitative analysis of the periodically forced relaxation oscillators. Mem. AMS244, 1981

  16. Levinson, N.: A second order differential equation with singular solutions. Ann. Math.50, 127–153 (1949)

    Google Scholar 

  17. Lorenz, E.N.: Deterministic nonperiodic flow. J. Atmos. Sci.20, 130–141 (1963)

    Google Scholar 

  18. Maynard Smith, J.: Mathematical ideas in biology. Cambridge: Cambridge University Press 1971

    Google Scholar 

  19. Milnor, J., Thurston, W.: On iterated maps of the interval, I, II (preprint)

  20. Newhouse, S.: Diffeomorphisms with infinitely many sinks. Topology13, 9–18 (1974)

    Google Scholar 

  21. Poincaré, H.: Les méthodes nouvelles de la mécanique céleste. Vol. 3. Paris: Gauthiers-Villars 1899

    Google Scholar 

  22. Pounder, J.R., Rogers, T.D.: The geometry of chaos: dynamics of a nonlinear second-order difference equation. Bull. Math. Biol.42, 551–597 (1980)

    Google Scholar 

  23. Rademacher, H.: Lectures on elementary number theory. New York: Blaisdell 1964

    Google Scholar 

  24. Ruelle, D.: A measure associated with axiomA attractors. Am. J. Math.98, 19–64 (1976)

    Google Scholar 

  25. Ruelle, D.: Strange attractors. The Mathematical Intelligencer2, 126–137 (1980)

    Google Scholar 

  26. Ruelle, D., Takens, F.: On the nature of turbulence. Commun. Math. Phys.20, 167–192 (1971)

    Google Scholar 

  27. Smale, S.: Diffeomorphisms with many periodic points. Differential and combinatorial topology, pp. 63–80. Princeton, N.J.: Princeton University Press 1965

    Google Scholar 

  28. Stein, P.R., Ulam, S.M.: Nonlinear transformation studies on electronic computers. Rozprawy Matem.39, 3–65 (1964)

    Google Scholar 

  29. Takens, F.: Forced oscillations and bifurcations. Applications of global analysis. Commun. Math. Inst. Rikjsuniversitat Utrecht

  30. Williams, R.F.: Expanding attractors. Publ. Math. I.H.E.S.43, 169–203 (1974); see also Proceedings of the Mount Aigual Conference on Differential Topology, Univ. of Montepellier, 1969

    Google Scholar 

  31. Zharkovsky, A.N.: Coexistence of cycles of a continuous map of a line into itself. Ukrain. Mat. Z.16, 61–71 (1974)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by D. Ruelle

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aronson, D.G., Chory, M.A., Hall, G.R. et al. Bifurcations from an invariant circle for two-parameter families of maps of the plane: A computer-assisted study. Commun.Math. Phys. 83, 303–354 (1982). https://doi.org/10.1007/BF01213607

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01213607

Keywords

Navigation