Advertisement

Communications in Mathematical Physics

, Volume 88, Issue 3, pp 399–409 | Cite as

Local aspects of superselection rules. II

  • Sergio Doplicher
  • Roberto Longo
Article

Abstract

In a theory where the local observables are determined by local field algebras as the fixed points under a (a priori noncommutative) group of gauge transformations of the first kind, we show that, if the field algebras possess intermediate type I factors, we can construct observables having the meaning of local charge measurements, and local current algebras in the field algebras.

Keywords

Neural Network Statistical Physic Complex System Nonlinear Dynamics Gauge Transformation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Doplicher, S.: Local aspects of superselection rules. Commun. Math. Phys.85, 73 (1982)Google Scholar
  2. 2.
    Doplicher, S., Haag, R., Roberts, J. E.: Local observables and particle statistics, I. Commun. Math. Phys.23, 198 (1971); II. Commun. Math. Phys.35, 49 (1974)Google Scholar
  3. 3.
    Buchholz, D., Fredenhagen, K.: Locality and the structure of particle states. Commun. Math. Phys.84, 1 (1982)Google Scholar
  4. 4.
    Buchholz, D.: Product states for local algebras. Commun. Math. Phys.36, 287 (1974)Google Scholar
  5. 5.
    Fröhlich, J.: Quantum theory of nonlinear invariant wave equations. In: Invariant wave equations. Lecture Notes in Physics, Vol. 73. Velo, G., Wightman, A.S. (eds.). Berlin, Heidelberg, New York: Springer 1978Google Scholar
  6. 6.
    D'Antoni, C., Longo, R.: Interpolation by type I factors and the flip automorphism. J. Funct. Anal. (to appear)Google Scholar
  7. 7.
    Doplicher, S., Longo, R.: Standard and split inclusions of von Neumann algebras (preprint)Google Scholar
  8. 8.
    Cohn, P. M.: Lie groups. Cambridge: Cambridge University Press 1961Google Scholar
  9. 8a.
    Chevalley, C.: Theory of Lie groups. Princeton, NJ: Princeton University Press 1946Google Scholar
  10. 9.
    Connes, A.: Caractérisation des espaces vectoriels ordonnés sous-jacents aux algèbres de von Neumann. Ann. Inst. Fourier, Grenoble24, 121 (1974)Google Scholar
  11. 10.
    Araki, H.: Positive cones, .... Proceedings of the Int. School E. Fermi, Course LX, Kastler, D. (ed.). Soc. Italiana di Fisica. Amsterdam: North-Holland 1976; Recent developments in the theory of operator algebras. Symposia Mathematica XX, Istituto Nazionale di Alta Matematica. New York: Academic Press 1976Google Scholar
  12. 11.
    Haagerup, U.: The standard form of a von Neumann algebra. Math. Scand.37, 271 (1975)Google Scholar
  13. 12.
    Takesaki, M.: Tomita's theory of modular Hilbert algebras. In: Lecture Notes in Mathematics, Vol. 128. Berlin, Heidelberg, New York: Springer 1970Google Scholar
  14. 13.
    Haag, R., Kadison, R. V., Kastler, D.: Nets ofC*-algebra and classification of states. Commun. Math. Phys.16, 11 (1970)Google Scholar
  15. 14.
    Nelson, E.: Analytic vectors. Ann. Math.70, 572 (1959); see also, Simon, J.: On the integrability of representations of finite dimensional real Lie algebras. Commun. Math. Phys.28, 39 (1972)Google Scholar
  16. 15.
    Bratteli, O., Robinson, D. W.: Unbounded derivations of von Neumann algebras. Ann. IHP25, 139 (1976)Google Scholar
  17. 16.
    Gell-Mann, M.: The symmetry group of vector and axial vector currents. Physics1, 63 (1964)Google Scholar
  18. 17.
    Treiman, S. B., Jackiw, R., Gross, D. J.: Lectures on current algebra and its applications. Princeton: Princeton University Press 1972Google Scholar
  19. 18.
    Buchholz, D.: in preparation (private communication).Google Scholar

Copyright information

© Springer-Verlag 1983

Authors and Affiliations

  • Sergio Doplicher
    • 1
  • Roberto Longo
    • 1
  1. 1.Istituto Matematico G. CastelnuovoUniversità di RomaRomaItaly

Personalised recommendations