Advertisement

Communications in Mathematical Physics

, Volume 88, Issue 3, pp 357–385 | Cite as

The heat equation with singular coefficients

I. Operators of the form\( - \frac{{d^2 }}{{dx^2 }} + \frac{\kappa }{{x^2 }}\) in dimension 1
  • Constantine J. Callias
Article

Abstract

The small time asymptotics of the kernel ofetH is defined and derived for\(H = \frac{{d^2 }}{{dx^2 }} + \frac{\kappa }{{x^2 }}\) on ℝ1. Lemmas on singular asymptotics in the sense of distributions are formulated and used. The results are applied to derive an index formula on ℝ1.

Keywords

Neural Network Statistical Physic Complex System Nonlinear Dynamics Heat Equation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Callias, C., Taubes, C.: Functional determinants in Euclidean Yang-Mills theory. Commun. Math. Phys.77, 229–250 (1980)Google Scholar
  2. 2.
    Gilkey, P.: The index theorem and the heat equation. Boston: Publish or Perish 1974;Google Scholar
  3. 2a.
    Seeley, R.T.: Proc. Symp. Pure Math., Chicago, 1966, p. 288Google Scholar
  4. 3.
    Reed, M., Simon, B.: Fourier analysis and self-adjointness. In: Methods of modern mathematical physics, Vol. II. New York: Academic Press 1975Google Scholar
  5. 4.
    Watson, G.N.: A treatise on the theory of Bessel functions. Cambridge: Cambridge University Press 1952; All the information necessary for this paper is contained in: Abramowitz, M., Stegun, I.A.: Handbook of mathematical functions. New York: Dover 1965Google Scholar
  6. 5.
    Callias, C.: Axial anomalies and index theorems on open spaces. Commun. Math. Phys.62, 213–234 (1978)Google Scholar
  7. 6.
    Uhlmann, G.: Light intensity distribution in conical refraction. Commun. Pure Appl. Math.35, 69 (1982)Google Scholar
  8. 7.
    See e.g., Goldberg, S.: Unbounded kinear operators. New York: McGraw-Hill 1966Google Scholar
  9. 8.
    See e.g., Seeley, R.T.: Integrodifferential operators on vector bundles. Trans. Am. Math. Soc.117, 167–204 (1965)Google Scholar
  10. 9.
    My ideas about the interpretation of the trace formulas grew out of conversations with S. TrahanasGoogle Scholar

Copyright information

© Springer-Verlag 1983

Authors and Affiliations

  • Constantine J. Callias
    • 1
  1. 1.Department of MathematicsColumbia UniversityNew YorkUSA

Personalised recommendations