Advertisement

Communications in Mathematical Physics

, Volume 76, Issue 2, pp 165–176 | Cite as

The mass spectrum and theS matrix of the massive Thirring model in the repulsive case

  • V. E. Korepin
Article

Abstract

The repulsive case of the quantum version of the massive Thirring model is considered. It is shown that there is a rich particle spectrum in the theory. TheS matrix of fermions proves to be a discontinuous function of the coupling constant. These effects are the result of the qualitative change of the physical vacuum in the limit of the strong repulsiong →−π.

Keywords

Neural Network Statistical Physic Mass Spectrum Complex System Nonlinear Dynamics 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Mikhailov, A.V.: Letters to Ju. Zh. Eksp. Teor. Fiz.23, 356 (1976)Google Scholar
  2. 1a.
    Kuznetzov, E.A., Mikhailov, A.V.: Teor. Mat. Fiz.30, 303 (1977)Google Scholar
  3. 1b.
    Izergin, A.G., Kulish, P.P.: Letters Math. Phys.2, 297 (1978)Google Scholar
  4. 2.
    Polyakov, A.M.: Zh. Eksp. Teor. Fiz.68, 1975 (1975)Google Scholar
  5. 2a.
    Kulish, P.P., Nisimov, E.P.: Teor. Mat. Fiz.29, 161 (1976)Google Scholar
  6. 2b.
    Lüscher, M.: Nucl. Phys. B117, 475 (1976); B135, 1 (1978)Google Scholar
  7. 3.
    Coleman, S.: Phys. Rev. D11, 2088–2097 (1975)Google Scholar
  8. 3a.
    Mandelstam, S.: Phys. Rev. D11, 3026–3030 (1975)Google Scholar
  9. 4.
    Pogrebkov, A.K., Sushko, V.N.: Teor. Mat. Fiz.24, 425 (1975);26, 419 (1976)Google Scholar
  10. 5.
    Zakharov, V.E., Takhtajan, L.A., Faddeev, L.D.: Reports Acaid. Sci. USSR219, 1334 (1974)Google Scholar
  11. 5a.
    Ablowitz, M.J., Kaup, D.J., Newell, A.C., Segur, H.: Phys. Rev. Lett.30, 1262–1264 (1973)Google Scholar
  12. 5b.
    Takhtajan, L.A., Faddeev, L.D.: Teor. Mat. Fiz.21, 160 (1974)Google Scholar
  13. 6.
    Korepin, V.E., Faddeev, L.D.: Teor. Mat. Fiz.25, 143 (1975)Google Scholar
  14. 6a.
    Dashen, R.F., Hasslacher, B., Neveu, A.: Phys. Rev. D11, 3424–3450 (1975)Google Scholar
  15. 6b.
    Goldstone, J., Jackiw, R.: Phys. Rev. D11, 1486–1498 (1975)Google Scholar
  16. 6c.
    Jackiw, R., Woo, G.: Phys. Rev. D12, 1643–1649 (1975)Google Scholar
  17. 6d.
    Korepin, V.E., Faddeev, L.D.: Phys. Rep. C42, 3 (1978)Google Scholar
  18. 7.
    Arefeva, I.Y., Korepin, V.E.: Letters to Zh. Eksp. Teor. Fiz.20, 680 (1974)Google Scholar
  19. 7a.
    Korepin, V.E.: Letters to Zh. Eksp. Teor. Fiz.23, 224 (1976)Google Scholar
  20. 8.
    Johnson, J., Krinsky, S., McCoy, B.: Phys. Rev. A8, 2526–2547 (1973)Google Scholar
  21. 9.
    Luther, A.: Phys. Rev. B14, 2153–2159 (1976)Google Scholar
  22. 10.
    Zamolodchikov, A.B.: Letters to Zh. Eksp. Teor. Fiz.25, 499–502 (1977)Google Scholar
  23. 10a.
    Zamolodchikov, A.B.: Commun. Math. Phys.55, 183–186 (1977)Google Scholar
  24. 11.
    Skljanin, E.K., Takhtajan, L.A., Faddeev, L.D.: Theor. Math. Phys. (USSR)40, 194 (1979)Google Scholar
  25. 12.
    Faddeev, L.D.: LOMI preprint, P-2-79, Leningrad (1979)Google Scholar
  26. 12a.
    Faddeev, L.D., Takhtajan, L.A.: Success. Math. Sci. (USSR)34, 13 (1979)Google Scholar
  27. 13.
    Berezin, F.A., Sushko, V.N.: Zh. Eksp. Teor. Fiz.48, 1293–1306 (1965)Google Scholar
  28. 14.
    Lieb, E.H., Mattis, D.C. (eds.): Mathematical physics in one dimension. New York, London: Academic Press 1966Google Scholar
  29. 14a.
    Lieb, E.H.: Phys. Rev.130, 1616–1624 (1963)Google Scholar
  30. 14b.
    Yang, C.N., Yang, C.P.: Phys. Rev.150, 321–327 (1966)Google Scholar
  31. 15.
    Berknoff, H., Thacker, H.B.: Phys. Rev. Lett.42, 135–138 (1979); Phys. Rev. D19, 3666–3681 (1979)Google Scholar
  32. 16.
    Korepin, V.E.: Teor. Mat. Fiz.41, N2 (1979)Google Scholar
  33. 17.
    Berg, B., Karowski, M., Theis, W.R., Thun, H.J.: Phys. Rev. D17, 1172–1179 (1978)Google Scholar

Copyright information

© Springer-Verlag 1980

Authors and Affiliations

  • V. E. Korepin
    • 1
  1. 1.Leningrad Department of the MathematicalInstitute Academy of Sciences of the USSRLeningradUSSR

Personalised recommendations