Advertisement

Communications in Mathematical Physics

, Volume 76, Issue 2, pp 117–128 | Cite as

On the adiabatic limit for Dirac particles in external fields

  • G. Nenciu
Article

Abstract

An adiabatic switching formalism is proposed to bypass the difficulties in defining the spontaneous pair creation in static electromagnetic fields.

Keywords

Neural Network Statistical Physic Complex System Electromagnetic Field Nonlinear Dynamics 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Zeldovich, Ya. B., Popov, V.S.: Usp. Fiz. Nauk105, 403–440 (1971)Google Scholar
  2. 2.
    Reinhardt, J., Greiner, W.: Rep. Prog. Phys.40, 219–295 (1977)Google Scholar
  3. 3.
    Rafelski, J., Fulcher, L.P., Klein, A.: Phys. Rep.38C (1978)Google Scholar
  4. 4.
    Brodsky, S.J., Mohr, P.K.: Q.E.D. in strong and supercritical fields in structure and collisions of ions and atoms (ed. I.A. Sellin). Berlin, Heidelberg, New York: Springer 1978Google Scholar
  5. 5.
    Seiler, R.: Particles with spin s≦1 in an external field. In: Lecture notes in physics, Vol. 73. Berlin, Heidelberg, New York: Springer 1978Google Scholar
  6. 6.
    Wightman, A.S.: Invariant wave equations; general theory and applications to the external field problem. In: Lecture notes in physics, Vol. 73. Berlin, Heidelberg, New York: Springer 1978Google Scholar
  7. 7.
    Klaus, M., Scharf, G.: Helv. Phys. Acta50, 779–802 (1978);50, 803, 814 (1978)Google Scholar
  8. 8.
    Nenciu, G., Scharf, G.: Helv. Phys. Acta51, 412–424 (1978)Google Scholar
  9. 9.
    Palmer, J.: J. Math. Anal. Appl.64, 189–215 (1978)Google Scholar
  10. 10.
    Rujsenaars, S.N.M.: J. Funct. Analysis33, 47–57 (1979)Google Scholar
  11. 11.
    Nenciu, G.: Strong external fields in Q.E.D. rigorous results. Proceedings of the International Summer School in Heavy Ion Physics. Predeal Rumania 1978Google Scholar
  12. 12.
    Bongaarts, P.J.M.: Ann. Phys. (N.Y.)56, 108–139 (1970)Google Scholar
  13. 13.
    Matthews, P.T., Salam, A.: Phys. Rev.90, 690–695 (1953)Google Scholar
  14. 14.
    Reed, M., Simon, B.: Methods of modern mathematical physics, Vol. II. New York: Academic Press 1975Google Scholar
  15. 15.
    Dollard, J.D.: J. Math. Phys. (N.Y.)7, 802–811 (1966)Google Scholar
  16. 16.
    Berezin, F.A.: The method of second quantization. New York, London: Academic Press 1966Google Scholar
  17. 17.
    Kato, T.: J. Phys. Soc. Jpn.5, 435–439 (1950)Google Scholar
  18. 18.
    Nenciu, G.: J. Phys. A13, L15-L18 (1980)Google Scholar
  19. 19.
    Wald, R.M.: Ann. Phys. (N.Y.)118, 490–510 (1979)Google Scholar
  20. 20.
    Messiah, A.: Mécanique quantique, Tome II. Paris: Dunod 1960Google Scholar
  21. 21.
    Nenciu, G.: Commun. Math. Phys.48, 235–247 (1976)Google Scholar
  22. 22.
    Schatten, R.: Norm ideals of completely continuous operators, 2nd printing. Berlin, Heidelberg, New York: Springer 1970Google Scholar

Copyright information

© Springer-Verlag 1980

Authors and Affiliations

  • G. Nenciu
    • 1
  1. 1.Institut für Theoretische Physik der Universität ZürichZürichSwitzerland

Personalised recommendations