Skip to main content
Log in

Abstract

Schrödinger operators with interactions symmetric about a plane (double-well potentials) occur in several branches of physics, such as chemistry and quantum field theory. They commonly exhibit asymptotic eigenvalue degeneracy, i.e., pairs of eigenvalues coalesce as the potential wells get farther apart. After a sketch of the theory of double wells, it is shown that the problem of estimating the gap between two such eigenvalues is reducible to finding asymptotics of eigenfunctions. For several examples and classes of potentials the gap is estimated or bounded above and below. The general case is fullyn-dimensional.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Coleman, S.: The uses of instantons. In: Proceedings of the International School of Physics, Erice, Italy, 1977 (to appear)

  2. Harrell, E.M.: Commun. Math. Phys.60, 73–95 (1978)

    Google Scholar 

  3. Brézin, E., Parisi, G., Zinn-Justin, J.: Phys. Rev. D16, 408–412 (1977)

    Google Scholar 

  4. Isaacson, D.: Comm. Pure App. Math.29, 531–551 (1976)

    Google Scholar 

  5. Fröman, N., Fröman, P.-O.: JWKB approximation, contribution to the theory. Amsterdam: North-Holland, 1965;

    Google Scholar 

  6. Fröman, N.: Ark. Fys.31, 445–451 (1966);

    Google Scholar 

  7. Fröman, N., Fröman, P.-O., Myhrman, U., Paulsson, R.: Ann. Phys.74, 314–323 (1972)

    Google Scholar 

  8. Kac, M.: Mathematical mechanisms of phase transitions. In: Brandeis Univ. Summer Institute in Theoretical Physics, 1966, Vol. 1. (eds. M. Chrétien, E.P. Gross, S. Desai). New York: Gordon and Breach 1968

    Google Scholar 

  9. Ashkin, J., Lamb, W.E., Jr.: Phys. Rev.64, 159–178 (1943)

    Google Scholar 

  10. Newell, G.F., Montroll, E.W.: Rev. Mod. Phys.25, 353–389 (1953)

    Google Scholar 

  11. Thompson, C.J., Kac, M.: Studies Appl. Math.48, 257–264 (1969)

    Google Scholar 

  12. Condon, E.U., Shortley, G.H.: The theory of atomic spectra. Cambridge: Cambridge University Press 1970

    Google Scholar 

  13. Herring, C.: Rev. Mod. Phys.34, 631–645 (1962)

    Google Scholar 

  14. Jacobi, C.G.J.: Vorlesungen über Dynamik. Berlin: G. Reiner 1884

    Google Scholar 

  15. Thirring, W.: Course in mathematical physics, Vol. I. Classical dynamical systems. New York, Vienna: Springer 1978

    Google Scholar 

  16. Pauli, W.: Ann. Phys.68, 177–240 (1922)

    Google Scholar 

  17. Jaffé, G.: Z. Phys.87, 535–544 (1934)

    Google Scholar 

  18. Bates, D.R., Ledsham, K., Stewart, A.L.: Phil. Trans. Roy. Soc. London A246, 215–240 (1953)

    Google Scholar 

  19. Damburg, R.J., Propin, R.Kh.: J. Phys. B, Ser. 2,1, 681–691 (1968)

    Google Scholar 

  20. Thirring, W.: Lehrbuch der mathematischen Physik, Vol. III. Quantenmechanik von Atomen und Molekülen. Vienna: Springer 1979. English translation to appear 1980

    Google Scholar 

  21. Aventini, P., Seiler, R.: Commun. Math. Phys.41, 119–134 (1975)

    Google Scholar 

  22. Combes, J.-M., Seiler, R.: Internat. J. Quantum Chem.14, 213–229 (1978)

    Google Scholar 

  23. Morgan J.D., III, Simon, B.: Behavior of molecular potential envergy curves for large nuclear separations (to appear)

  24. Reed, M., Simon, B.: Methods of modern mathematical physics, in four volumes. New York: Academic Press 1972, 1975, 1979, 1978

    Google Scholar 

  25. Temple, G.: Proc. Roy. Soc. London119A, 276–293 (1928)

    Google Scholar 

  26. Kato, T.: J. Phys. Soc. Japan4, 334–339 (1949)

    Google Scholar 

  27. Harrell, E.M.: Proc. Am. Math. Soc.69, 271–276 (1978)

    Google Scholar 

  28. Harrell, E.M.: Ann. Phys.119, 351–369 (1979)

    Google Scholar 

  29. Slaggie, E.L., Wichmann, E.H.: J. Math. Phys.3, 946–968 (1962)

    Google Scholar 

  30. Glazman: I.M.: Direct methods of qualitative spectral analysis of singular differential operators. Jerusalem: Israel Program for Scientific Translation 1965

    Google Scholar 

  31. Bardos, C., Mérigot, M.: Comptes Rendues Acad. Sci. Paris281A, 561–563 (1975)

    Google Scholar 

  32. Deift, P., Hunziker, W., Simon, B., Vock, E.: Comm. Math. Phys.64, 1–34 (1978)

    Google Scholar 

  33. Hoffmann-Ostenhof, M., Hoffmann-Ostenhof, T.: Phys. Rev. A16, 1782–1785 (1977)

    Google Scholar 

  34. Kato, T.: Commun. on Pure and Appl. Math.10, 151–177 (1957)

    Google Scholar 

  35. Abramowitz, M., Stegun, I. (eds.): Handbook of mathematical functions. NBS Applied Mathematics Series 55. Washington: National Bureau of Standards 1964

    Google Scholar 

  36. Klaus, M., Simon, B.: Ann. Inst. Henri Poincaré30, 83–87 (1979)

    Google Scholar 

  37. Schiff, L.I.: Quantum mechanics, 3rd ed. New York: McGraw-Hill 1968

    Google Scholar 

  38. Simon, B.: Ann. Phys.58, 76–136 (1970)

    Google Scholar 

  39. Hsieh, P.-F., Sibuya, Y.: J. Math. Anal. Appl.16, 84–103 (1966)

    Google Scholar 

  40. Lubkin, G.B.: Physics Today32, No. 5, 17–19 (1979)

    Google Scholar 

  41. Flammer, C.: Spheroidal wave functions. Stanford, California: Stanford University Press 1957

    Google Scholar 

  42. Buchholz, H.: The confluent hypergeometric function. Berlin, Heidelberg, New York: Springer 1969

    Google Scholar 

  43. Herbst, I., Sloan, A.: Trans. Am. Math. Soc.236, 325–360 (1978)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by B. Simon

Much of this work was done with support of an NSF National Needs Fellowship at the Department of Mathematics, M.I.T.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Harrell, E.M. Double Wells. Commun.Math. Phys. 75, 239–261 (1980). https://doi.org/10.1007/BF01212711

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01212711

Keywords

Navigation