Skip to main content
Log in

Time decay of solutions to the cauchy problem for time-dependent Schrödinger-Hartree equations

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We consider the time-dependent Schrödinger-Hartree equation

$$iu_t + \Delta u = \left( {\frac{1}{r}*|u|^2 } \right)u + \lambda \frac{u}{r},(t, x) \in \mathbb{R} \times \mathbb{R}^3 ,$$
((1))
$$u(0,x) = \phi (x) \in \Sigma ^{2,2} ,x \in \mathbb{R}^3 ,$$
((2))

where λ≧0 and\(\Sigma ^{2,2} = \{ g \in L^2 ;\parallel g\parallel _{\Sigma ^{2,2} }^2 = \sum\limits_{|a| \leqq 2} {\parallel D^a g\parallel _2^2 + \sum\limits_{|\beta | \leqq 2} {\parallel x^\beta g\parallel _2^2< \infty } } \} \).

We show that there exists a unique global solutionu of (1) and (2) such that

$$u \in C(\mathbb{R};H^{1,2} ) \cap L^\infty (\mathbb{R};H^{2,2} ) \cap L_{loc}^\infty (\mathbb{R};\Sigma ^{2,2} )$$

with

$$u \in L^\infty (\mathbb{R};L^2 ).$$

Furthermore, we show thatu has the following estimates:

$$\parallel u(t)\parallel _{2,2} \leqq C,a.c. t \in \mathbb{R},$$

and

$$\parallel u(t)\parallel _\infty \leqq C(1 + |t|)^{ - 1/2} ,a.e. t \in \mathbb{R}.$$

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Chadam, J. M., Glassey, R. T.: Global existence of solutions to the Cauchy problem for time-dependent Hartree equations. J. Math. Phys.16, 1122–1130 (1975)

    Google Scholar 

  2. Dias, J. P.: Time decay for the solutions of some nonlinear Schrödinger equations. In: Bielefeld encounters in mathematics and physics IV and V, trends and developments in eighties. Singapore: World Scientific 1985

    Google Scholar 

  3. Dias, J. P., Figueira, M.: Conservation laws and time decay for the solutions to some nonlinear Schrödinger-Hartree equations. J. Math. Anal. Appl.84, 486–508 (1981)

    Google Scholar 

  4. Friedman, A.: Partial differential equations. New York: Holt-Rinehart and Winston 1969

    Google Scholar 

  5. Ginibre, J., Velo, G.: On a class of non-linear Schrödinger equation II. Scattering theory. J. Funct. Anal.32, 33–71 (1979)

    Google Scholar 

  6. Ginibre, J., Velo, G.: On a class of non-linear Schrödinger equations with non-local interaction. Math. Z.170, 109–136 (1980)

    Google Scholar 

  7. Ginibre, J., Velo, G.: Sur une équation de Schrödinger non-linéaire avec interaction non-locale. In: Nonlinear partial differential equations and their applications, college de France seminair, Vol. II. Boston: Pitman 1981

    Google Scholar 

  8. Glassey, R. T.: Asymptotic behavior of solutions to certain nonlinear Schrödinger-Hartree equations. Commun. Math. Phys.53, 9–18 (1977)

    Google Scholar 

  9. Hayashi, N.: Asymptotic behavior of solutions to time-dependent Hartree equations. J. Nonlinear Anal. (to appear)

  10. Stein, E. M.: Singular integral and differentiability properties of functions. Princeton Math. Ser. 30. Princeton, NJ: Princeton University Press 1970

    Google Scholar 

  11. Tsutsumi, M.: Weighted Sobolev spaces and rapidly decreasing solutions of some nonlinear dispersive wave equations. J. Differ. Equations42, 260–281 (1981)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by B. Simon

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hayashi, N., Ozawa, T. Time decay of solutions to the cauchy problem for time-dependent Schrödinger-Hartree equations. Commun.Math. Phys. 110, 467–478 (1987). https://doi.org/10.1007/BF01212423

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01212423

Keywords

Navigation