Advertisement

Communications in Mathematical Physics

, Volume 95, Issue 3, pp 317–343 | Cite as

Phase retrieval

  • Joseph Rosenblatt
Article

Abstract

The problem of phase retrieval arises in experimental uses of diffraction to determine intrinsic structure because the modulus of a Fourier transform is all that can usually be measured after diffraction occurs. For finite distributions, the phase retrieval problem can be solved by methods of factorization in suitable rings of polynomials; for continuous distributions with compact support, the methods of complex analysis are needed to solve the phase retrieval problem. These methods are discussed and examples are given for illustration.

Keywords

Neural Network Fourier Fourier Transform Statistical Physic Complex System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ahlfors, L.: Complex analysis. New York: McGraw-Hill 1966Google Scholar
  2. 2.
    Arsac, J.: Transformation de Fourier et théorie des distributions. Paris: Dunod 1961Google Scholar
  3. 3.
    Avrami, M.: A method of direct determination of crystal structure from X-ray data. Z. Kristallogr.100, 381–393 (1939)Google Scholar
  4. 4.
    Born, M., Wolf, L.: Principles of optics. Oxford: Pergamon Press 1970Google Scholar
  5. 5.
    Buerger, M.J.: Interpoint distances in cyclotomic sets. Can. Mineral.16, 301–314 (1978)Google Scholar
  6. 6.
    Buerger, M.J.: Exploration of cyclotomic point sets in tautoeikomic complementary pairs. Z. Kristallogr.145, 371–411 (1977)Google Scholar
  7. 7.
    Buerger, M.J.: Proofs and generalizations of Patterson's theorems on homometric complementary pairs. Z. Kristallogr.143, 79–98 (1976)Google Scholar
  8. 8.
    Buerger, M.J.: The algebra and geometry of convolutions. Atti. Acad. Noz. Jincei. Mem. Cl. Sci. Math. Nat. Sez.II (8, 683–695 (1962)Google Scholar
  9. 9.
    Buerger, M.J.: An algebraic representation of the images of sets of points. Atti. Acad. Sci. Torino Cl. Sci. Fis. Math. Nat.96, 175–192 (1961/1962)Google Scholar
  10. 10.
    Buerger, M.J.: Vector sets. Acta Crystallogr.3, 87–97 (1950)Google Scholar
  11. 11.
    Bullough, R.K.: On homometric sets. II. Sets obtained by singular transformations. Acta Crystallogr.17, 295–308 (1964)Google Scholar
  12. 12.
    Bullough, R.K.: On homometric sets. I. Some general theorems. Acta Crystallogr.14, 257–268 (1961)Google Scholar
  13. 13.
    Burge, R.E., Fiddy, M.A., Greenway, A.H., Ross, G.: The phase problem. Proc. R. Soc. London A350, 191–212 (1976)Google Scholar
  14. 14.
    Caelli, T.M.: On generating spatial configurations with identical interpoint distance distributions. Comb. Math. VII, Proc., New Castle, Australia. In: Lecture Notes in Mathematics, Vol. 829. Berlin, Heidelberg, New York: Springer 1979, pp. 69–75Google Scholar
  15. 15.
    Carpenter, G.: Principles of crystal structure determination. New York: Benjamin 1969Google Scholar
  16. 16.
    Cartwright, M.L.: The zeros of certain integral functions. Q. J. Math.1, 38–59 (1930)Google Scholar
  17. 17.
    Champeney, D.C.: Fourier transforms and their physical applications. London: Academic Press 1973Google Scholar
  18. 18.
    Chung Chieh: Analysis of cyclotomic sets. Z. Kristallogr.150, 261–277 (1979)Google Scholar
  19. 19.
    Cowley, J.: Diffraction physics. New York: North-Holland 1975Google Scholar
  20. 20.
    Fowle, E.N.: The design of FM pulse compression signals. IEEE Trans. IT-10, 61–67 (1964)Google Scholar
  21. 21.
    Harger, R.O.: Realization of ambiguity functions. TEEE Trans. SET-9, 127–130 (1963)Google Scholar
  22. 22.
    Hartman, P., Winter, A.: On the maxima of the Patterson functions. Phys. Rev.81, 271–273 (1951)Google Scholar
  23. 23.
    Hille, E.: Analytic function theory. Vols. I, II. New York: Chelsea 1973 and 1976Google Scholar
  24. 24.
    Hosemann, R., Bagchi, S.N.: On homometric sets. Acta Crystallogr.7, 237–241 (1954)Google Scholar
  25. 25.
    Hosemann, R., Bagchi, S.N.: Direct analysis of diffraction by matter. New York: North-Holland 1962Google Scholar
  26. 26.
    Kline, M., Kay, I.: Electromagnetic theory and geometrical optics. New York: Wiley 1965Google Scholar
  27. 27.
    Ladd, M.F.C., Palmer, R.A.: Structure determination by X-ray crystallography. New York: Plenum Press 1977Google Scholar
  28. 28.
    Lipson, H., Cochran, W.: The determination of crystal structures. Ithaca: Cornell University Press 1966Google Scholar
  29. 29.
    McLachlan, D.: X-ray crystal structure. New York: McGraw-Hill 1957Google Scholar
  30. 30.
    Morgan, S.P.: On the mathematical question of phase reconstruction, Misc. 10, Restoration of atmospherically degraded images, Vol. 3, Woods Hole Summer Study, Nat. Acad. Sci. and NRC, pp. 53–60 (1966)Google Scholar
  31. 31.
    O'Neill, E.L., Walther, A.: The question of phase in image formation. Optica Acta10, 33–40 (1962)Google Scholar
  32. 32.
    Paley, R.E.A.C., Wiener, N.: Fourier transforms in the complex domain. AMS Colloquim Publ. Vol. 19. New York, 1934Google Scholar
  33. 33.
    Patterson, A.L.: Ambiguities in the X-ray analysis of crystal structure. Phys. Rev.65, 195–201 (1944)Google Scholar
  34. 34.
    Patterson, A.L.: Homometric structures. Nature143, 939–940 (1939)Google Scholar
  35. 35.
    Patterson, A.L.: A direct method for the determination of the components of interatomic distances in crystals. Z. Kristallogr.90, 517–542 (1935)Google Scholar
  36. 36.
    Pauling, L., Shappell, M.D.: The crystal structure of bixbyite and theC-modification of the sesquioxides. Z. Kristallogr.75, 128–142 (1930)Google Scholar
  37. 37.
    Rau, V.G. et al.: On the calculation of possible Patterson cyclotomic sets. Proc. Acad. Sci. USSR225, 1110–1113 (1980)Google Scholar
  38. 38.
    Readhead, A.C.S., Wilkinson, R.N.: The mapping of compact radio sources from VLBI data, Astrophys. J.223, 25–36 (1978)Google Scholar
  39. 39.
    Rosenblatt, J., Seymour, P.: The structure of homometric sets, SIAM J. Alg. Disc. Meth.3, 343–350 (1982)Google Scholar
  40. 40.
    Rossi, P., McMurdy, C.W., McCreery, R.L.: Diffractive spectroelectrochemistry; use of diffracted light for monitoring electrogenerated chromophores. J. Am. Chem. Soc.103, 2524–2529 (1981)Google Scholar
  41. 41.
    Rothbauer, R.: On the separation of the unknown parameters of the problem of crystal-structure analysis. Acta. Crystallogr. A36, 27–32 (1980)Google Scholar
  42. 42.
    Schwartz, L.: Théorie des distributions. Paris: Hermann 1966Google Scholar
  43. 43.
    Silver, S.: Microwave antenna theory and design. MIT Rad. Lab. Series, Vol. 12, pp. 279–282. New York: McGraw-Hill 1949Google Scholar
  44. 44.
    Stout, G., Jensen, L.: X-ray structure determination. London: MacMillan 1968Google Scholar
  45. 45.
    Titchmarsh, E.C.: The zeros of certain integral functions. Proc. London Math. Soc. (2)25, 283–307 (1926)Google Scholar
  46. 46.
    Toraldo Di Francia, G.: Resolving power and information. J. Opt. Soc. Am.45, 497–501 (1955)Google Scholar
  47. 47.
    Walther, A.: The question of phase retrieval in optics. Optica Acta10, 41–49 (1963)Google Scholar
  48. 48.
    Wiener, N.: Generalized harmonic analysis. Acta Math.55, 117–258 (1930)Google Scholar
  49. 49.
    International tables for X-ray crystallography. Vol.I. Birmingham, England: The Kunech Press 1965Google Scholar

Copyright information

© Springer-Verlag 1984

Authors and Affiliations

  • Joseph Rosenblatt
    • 1
  1. 1.Mathematics DepartmentOhio State UniversityColumbusUSA

Personalised recommendations