Advertisement

Communications in Mathematical Physics

, Volume 95, Issue 3, pp 307–315 | Cite as

Euler equations on finite dimensional Lie algebras arising in physical problems

  • O. I. Bogoyavlensky
Article

Abstract

Real physical problems are presented in which Euler equations on Lie algebras of arbitrarily high finite dimension arise. A new integrable case of rotation of a magnetized rigid body in constant gravitational and magnetic fields is found. It generalizes the Kowalewski classical integrable case.

Keywords

Magnetic Field Neural Network Statistical Physic Complex System Nonlinear Dynamics 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Euler, L.: Decouverte d'une nouveau principe de mechanique. Mem. Acad. Sci. Berlin14, 154–193 (1758)Google Scholar
  2. 2.
    Kowalewski, S.V.: Sur la probleme de la rotation d'un corps solide autour d'un point fixe. Acta Math.12, 177–232 (1889)Google Scholar
  3. 3.
    Arnold, V.I.: Mathematical methods of classical mechanics (in Russian). Moscow: Nauka 1974 [English transl. Berlin, Heidelberg, New York: pringer 1979]Google Scholar
  4. 4.
    Novikov, S.P., Shmeltser, I.: Periodical solutions of the Kirchhoff equations for free motion of a rigid body in fluids and an extended Lyusternik-Shnirelman-Morse theory. I (in Russian). Funkcional. Anal. i Prilozen.15, 54–66 (1981)Google Scholar
  5. 5.
    Bogoyavlensky, O.I.: New integrable problem of classical mechanics. Commun. Math. Phys.94, 255–269 (1984)Google Scholar
  6. 6.
    Bogoyavlensky, O.I.: Periodic solutions in a model of pulsar rotations. Commun. Math. Phys. (submitted)Google Scholar
  7. 7.
    Bogoyavlensky, O.I.: Integrable Euler equations on SO (4) and their physical applications. Commun. Math. Phys.93, 417–436 (1984)Google Scholar
  8. 8.
    Bogoyavlensky, O.I.: Dynamics of a rigid body withn ellipsoidal cavities filled with a magnetic fluid (in Russian). Dokl. Akad. Nauk SSSR272, 1364–1367 (1983)Google Scholar
  9. 9.
    Goryachev, D.N.: New cases of motion of a rigid body around a fixed point (in Russian). Warsaw University Izv.3, 3–14 (1915)Google Scholar
  10. 10.
    Goryachev, D.N.: New cases of integrability for dynamical Euler equations (in Russian). Warsaw University Izv.3, 3–15 (1916)Google Scholar
  11. 11.
    Perelomov, A.M.: Lax representation for the system of S. Kowalevskaya type. Commun. Math. Phys.81, 239–243 (1981)Google Scholar
  12. 12.
    Berezin, F.A.: Models os Gross-Neveu type are quantization of a classical mechanics with nonlinear phase space. Commun. Math. Phys.63, 131–154 (1978)Google Scholar

Copyright information

© Springer-Verlag 1984

Authors and Affiliations

  • O. I. Bogoyavlensky
    • 1
  1. 1.V. A. Steklov Mathematical InstituteAcademy of Sciences of the USSRMoscowUSSR

Personalised recommendations