Communications in Mathematical Physics

, Volume 95, Issue 3, pp 289–300 | Cite as

The Yang-Mills collective-coordinate potential

  • John Lott


The potential of the pure Yang-Mills theory when quantized on the space of gauge fields modulo gauge transformations is computed. The large-N behaviour is given in terms of the Green's function for a scalar field in the adjoint representation.


Neural Network Statistical Physic Complex System Nonlinear Dynamics Scalar Field 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Witten, E.: 1979 Cargese lectures: recent developments in gauge theories. t'Hooft, G. (ed.). New York: Plenum Press 1980Google Scholar
  2. 2.
    Jevicki, A., Sakita, B.: The quantum collective field method and its application to the planar limit. Nucl. Phys. B165, 511 (1980)Google Scholar
  3. 3.
    Bardakci, K., Caldi, D.G., Neuberger, H.: Dominant Euclidean configurations for allN. Nucl. Phys. B177, 333 (1981)Google Scholar
  4. 4.
    Sakita, B.: Field theory of strings as a collective field theory ofU(N) gauge fields. Phys. Rev. D21, 1067 (1980)Google Scholar
  5. 5.
    Brézin, E., Itzykson, C., Parisi, G., Zuber, J.B.: Planar diagrams. Commun. Math. Phys.59, 35 (1978)Google Scholar
  6. 6.
    Bardakci, K.: Classical solutions and the largeN-limit. Nucl. Phys. B178, 263 (1981)Google Scholar
  7. 7.
    Singer, I.M.: Some remarks on the Gribov ambiguity. Commun. Math. Phys.60, 7 (1978);Google Scholar
  8. 7a.
    Babelon, O., Viallet, C.M.: The Riemannian geometry of the configuration space of gauge theories. Commun. Math. Phys.81, 515 (1981) and references thereinGoogle Scholar
  9. 8.
    Lovelace, C.: Construction of theN=∞ master field for strong coupling. Nucl. Phys. B197, 76 (1982)Google Scholar
  10. 9.
    Feynman, R.P.: The qualitative behavior of Yang-Mills theory in 2+1 dimensions. Nucl. Phys. B188, 479 (1981);Google Scholar
  11. 9a.
    Singer, I.M.: The geometry of orbit space for nonabelian gauge theories. Phys. Scri.24, 817 (1981)Google Scholar
  12. 10.
    Ray, D.B., Singer, I.M.:R-torsion and the Laplacian on Riemannian manifolds. Adv. Math.7, 145 (1971);Google Scholar
  13. 10a.
    Corrigan, E., Goddard, P., Osborn, H., Templeton, S.: Zeta-function regularization and multi-instanton determinants. Nucl. Phys. B159, 469 (1979)Google Scholar
  14. 11.
    Seeley, R.: 1968 CIME Lectures: topics in pseudo-differential operators. Edizioni Cremonese, 1969Google Scholar
  15. 12.
    Kobayashi, S., Nomizu, K.: Foundations of differential geometry, Vol. 1, p. 50 New York: Interscience 1963Google Scholar
  16. 13.
    Stroock, D.: On certain systems of parabolic equations. Comm. Pure Appl. Math.23, 447 (1970)Google Scholar

Copyright information

© Springer-Verlag 1984

Authors and Affiliations

  • John Lott
    • 1
  1. 1.Department of MathematicsHarvard UniversityCambridgeUSA

Personalised recommendations