Advertisement

Communications in Mathematical Physics

, Volume 105, Issue 1, pp 133–152 | Cite as

Bulk transport properties and exponent inequalities for random resistor and flow networks

  • J. T. Chayes
  • L. Chayes
Article

Abstract

The properties of random resistor and flow networks are studied as a function of the density,p, of bonds which permit transport. It is shown that percolation is sufficient for bulk transport, in the sense that the conductivity and flow capacity are bounded away from zero wheneverp exceeds an appropriately defined percolation threshold. Relations between the transport coefficients and quantities in ordinary percolation are also derived. Assuming critical scaling, these relations imply upper and lower bounds on the conductivity and flow exponents in terms of percolation exponents. The conductivity exponent upper bound so derived saturates in mean field theory.

Keywords

Neural Network Statistical Physic Field Theory Complex System Lower Bound 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ziman, J.M.: J. Phys. C1, 1532 (1968)Google Scholar
  2. 2.
    Eggarter, T.P., Cohen, M.H.: Phys. Rev. Lett.25, 807 (1970)Google Scholar
  3. 3.
    Eggarter, T.P., Cohen, M.H.: Phys. Rev. Lett.27, 129 (1971)Google Scholar
  4. 4.
    Last, B.J., Thouless, D.J.: Phys. Rev. Lett.27, 1719 (1971)Google Scholar
  5. 5.
    Kirkpatrick, S.: Phys. Rev. Lett.27, 1722 (1971)Google Scholar
  6. 6.
    Kirkpatrick, S.: Rev. Mod. Phys.45, 574 (1973)Google Scholar
  7. 7.
    Stinchcombe, R.B.: J. Phys. C6, L1 (1973)Google Scholar
  8. 8.
    Straley, J.P.: J. Phys. C10, 3009 (1977)Google Scholar
  9. 9.
    Skal, A.S., Shlovskii, B.I.: Fiz. Tekh. Poluprov.8, 1586 (1974) [Sov. Phys.-Semicond.8, 1029 (1975)]Google Scholar
  10. 10.
    de Gennes, P.G.: J. Physique Lett.37, L1 (1976)Google Scholar
  11. 11.
    Harris, A.B., Fisch, R.: Phys. Rev. Lett.77, 796 (1977)Google Scholar
  12. 12.
    Dasgupta, C., Harris, A.B., Lubensky, T.C.: Phys. Rev. B17, 1375 (1978)Google Scholar
  13. 13.
    Stephen, M.: Phys. Rev. B17, 4444 (1978)Google Scholar
  14. 14.
    Wallace, D.J., Young, A.P.: Phys. Rev. B17, 2384 (1978)Google Scholar
  15. 15.
    Levinstein, M.E., Shur, M.S., Efros, A.L.: Zh. Eksp. Teor. Fiz.69, 2203 (1975) [Sov. Phys. JETP42, 1120 (1975)]Google Scholar
  16. 16.
    Straley, J.P.: J. Phys. C13, 819 (1980)Google Scholar
  17. 17.
    Alexander, S., Orbach, P.: J. Physique Lett.43, L625 (1982)Google Scholar
  18. 18.
    Harris, A.B., Lubensky, T.C.: J. Phys. A16, L365 (1983)Google Scholar
  19. 19.
    Harris, A.B., Kim, S., Lubensky, T.C.: Phys. Rev. Lett.53, 743 (1984) [see also Rammal, R., Lemieux, M.-A., Trembly, A.-M.S.: Phys. Rev. Lett.54, 1087 (1985)]Google Scholar
  20. 20.
    Lobb, C.J., Frank, D.J.: Phys. Rev. B30, 4090 (1984)Google Scholar
  21. 21.
    Straley, J.P.: J. Phys. C15, 2333 (1982)Google Scholar
  22. 22.
    Hughes, B., Prager, S.: In: Mathematics and physics of disordered media. Lecture Notes in Mathematics, Vol. 1035. Berlin, Heidelberg, New York: Springer 1983Google Scholar
  23. 23.
    Grimmett, G., Kesten, H.: Z. Wahrscheinlichkeitstheor. Verw. Geb.66, 335 (1984)Google Scholar
  24. 24.
    Kesten, H.: Percolation theory for mathematicians. Boston: Birkhäuser 1982Google Scholar
  25. 25.
    Aizenman, M., Chayes, J.T., Chayes, L., Fröhlich, J. Russo, L.: Commun. Math. Phys.92, 19 (1983)Google Scholar
  26. 26.
    Chayes, J.T., Chayes, L., Durrett, R.: On the critical behavior of the two-dimensional first passage problem (preprint)Google Scholar
  27. 27.
    Kipnis, C., Varadhan, S.R.S.: Central limit theorem for additive functional of reversible Markov processes and applications to simple exclusions. Commun. Math. Phys. (in press)Google Scholar
  28. 28.
    Papanicolaou, G.C., Varadhan, S.R.S.: In: Colloquia Math. Soc. János Bolyai 27. Random Fields, Estergom (Hungary), p. 835. Amsterdam: North-Holland 1979Google Scholar
  29. 29.
    Golden, K., Papanicolaou, G.: Commun. Math. Phys.90, 473 (1983)Google Scholar
  30. 30.
    Kesten, H.: First passage percolation and a higher dimensional generalization (preprint) (1985)Google Scholar
  31. 31.
    Kesten, H.: Surfaces with minimal random weights and maximal flows: A higher dimensional generalization of first passage percolation (preprint) (1985)Google Scholar
  32. 32.
    Kesten, H.: Commun. Math. Phys.74, 41 (1980)Google Scholar
  33. 33.
    Russo, L.: Wahrscheinlichkeitstheor. Verw. Geb.43, 39 (1978)Google Scholar
  34. 34.
    Seymour, P.D., Welsh, D.J.A.: Ann. Discrete Math.3, 227 (1978)Google Scholar
  35. 35.
    Bott, R., Duffin, R.J.: Trans. Am. Math. Soc.74, 99 (1953)Google Scholar
  36. 36.
    Harris, T.E.: Proc. Camb. Phil. Soc.56, 13 (1960)Google Scholar
  37. 37.
    Fortuin, C., Kastelyn, P., Ginibre, J.: Commun. Math. Phys.22, 89 (1981)Google Scholar
  38. 38.
    van den Berg, J., Kesten, H.: Inequalities with applications to percolation and reliability (to appear in Adv. Appl. Prob.)Google Scholar
  39. 39.
    Aizenman, M.: Phys. Rev. Lett.54, 839 (1985)Google Scholar

Copyright information

© Springer-Verlag 1986

Authors and Affiliations

  • J. T. Chayes
    • 1
  • L. Chayes
    • 1
  1. 1.Laboratory of Atomic and Solid State Physics, Clark HallCornell UniversityIthacaUSA

Personalised recommendations