Advertisement

Communications in Mathematical Physics

, Volume 105, Issue 1, pp 107–122 | Cite as

Instantons and jumping lines

  • Jacques Hurtubise
Article

Abstract

We study the behaviour under deformation of holomorphic bundles of rank 2 over ℙ1 (ℂ). This is then applied to the description of the moduli space\(\tilde M_n \) of framed SU(2) instantons of chargen;\(\tilde M_n \) is shown to map to ℂ n , with equidimensional fibers. We use this to provide a stratification of\(\tilde M_n \) and compute the strata explicitly to codimension 4. This then yields π1(\(\tilde M_n \))=ℤ2, and, for the standard moduli spaceMn, π1(Mn)=0 forn odd, ℤ2 forn even.

Keywords

Neural Network Statistical Physic Stratification Complex System Nonlinear Dynamics 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Atiyah, M.F.: The geometry of Yang-Mills fields. Accademia Nazionale dei Lincei, Scuola Normale Superiore, Pisa 1979Google Scholar
  2. 2.
    Atiyah, M.F.: Instantons in two and four dimensions. Commun. Math. Phys.93, 437–451 (1984)Google Scholar
  3. 3.
    Atiyah, M.F., Drinfeld, V.G., Hitchin, N.J., Manin, Yu.I.: Construction of instantons. Phys. Lett.65A, 185–187 (1978)Google Scholar
  4. 4.
    Barth, W.: Some properties of stable rank-2 vector bundles on ℙn. Math. Ann.226, 125–150 (1977)Google Scholar
  5. 5.
    Barth, W.: Moduli of vector bundles on the projective plane. Invent. Math.42, 63–91 (1977)Google Scholar
  6. 6.
    Donaldson, S.K.: Instantons and geometric invariant theory. Commun. Math. Phys.93, 453–461 (1984)Google Scholar
  7. 7.
    Grauert, H., Mülich, G.: Vektorbündel vom Rang 2 über demn-dimensionalem komplex projektiven Raum. Manuscr. Math.16, 75–100 (1975)Google Scholar
  8. 8.
    Grothendieck, A.: Eléments de géométrie algébrique. III. Publ. Math. IHESGoogle Scholar
  9. 9.
    Grothendieck, A.: Sur la classification des fibres holomorphes sur la sphère de Riemann. Am. J. Math.79, 121–138 (1957)Google Scholar
  10. 10.
    Hartshorne, R.: Algebraic geometry. Berlin, Heidelberg, New York: Springer GTM (1978)Google Scholar
  11. 11.
    Hartshorne, R.: Stable vector bundles and instantons. Commun. Math. Phys.59, 1–15 (1978)Google Scholar
  12. 12.
    Horrocks, G.: Vector bundles on the punctured spectrum of a local ring. Proc. Lond. Math. Soc. (3)14, 689–713 (1964)Google Scholar
  13. 13.
    Okonek, C., Schneider, M., Spindler, H.: Vector bundles on complex projective spaces. Prog. Math. 3. Boston: Birkhäuser 1980Google Scholar
  14. 14.
    Le Potier, J.: Fibres stables de rang 2 sur ℙ2(ℂ). Math. Ann.241, 217–256 (1979)Google Scholar

Copyright information

© Springer-Verlag 1986

Authors and Affiliations

  • Jacques Hurtubise
    • 1
  1. 1.Département de MathématiquesU.Q.A.M.MontrealCanada

Personalised recommendations